【題目】如圖,在矩形中,邊的中點,,垂足為點,連接,有下列五個結(jié)論:①;②;③;④;⑤.其中正確結(jié)論的個數(shù)是( )

A.1B.C.D.

【答案】D

【解析】

①四邊形ABCD是矩形,BEAC,則∠ABC=AFB=90°,又∠BAF=CAB,于是AEF∽△CAB

②由,又ADBC,所以,故可得CF=2AE

③過DDMBEACN,得到四邊形BMDE是平行四邊形,求出,得到CN=NF,根據(jù)線段的垂直平分線的性質(zhì)可得結(jié)論;

④設(shè)AE=aAB=b,則AD=2a,由BAE∽△ADC,得出,進而得出;

⑤由AEBC,推出,設(shè)SAEF=SDEF=m,推出SABF=2m,SBFC=4mS矩形ABCD=12m,S矩形BCDF=8m,推出SABFS四邊形BCDF=14,故⑤正確

∵四邊形ABCD是矩形,

ADBC,∠ABC=90°,AD=BC,

BEAC于點F

∴∠EAC=ACB,∠ABC=AFE=90°,

∴△AEF∽△CAB,故①正確;

ADBC,

∴△AEF∽△CBF,

AE=AD=BC,

,

CF=2AF,故②正確;

如圖,過DDMBEACN,

DEBM,BEDM,

∴四邊形BMDE是平行四邊形,

BM=DE=BC,

BM=CM,

CN=NF,

BEAC于點FDMBE,

DNCF,

DM垂直平分CF,

DF=DC,故③正確;

設(shè)AE=a,AB=b,則AD=2a,

BAE∽△ADC,有,即,

所以,b=,

,故④錯誤;

,

,

設(shè),

,,

故⑤正確;

故選:D

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“校同安全”受到全社會的廣泛關(guān)注,我市某中學(xué)對部分學(xué)生就校園安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了如圖兩幅尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:

1)接受問卷調(diào)查的學(xué)生共有    人,扇形統(tǒng)計圖中“了解”部分所對應(yīng)扇形的圓心角為    度;并補全條形統(tǒng)計圖.

2)若該中學(xué)共有學(xué)生人,請根據(jù)上述調(diào)查結(jié)果,估計該中學(xué)學(xué)生中對校園安全知識達到“了解”和“基本了解”程度的總?cè)藬?shù)為    人;

3)若從對校園安全知識達到“了解”程度的個女生個男生中分別隨機抽取人參加校園安全知識競賽,請用樹狀圖或列表法求出恰好抽到女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某游樂場部分平面圖如圖所示C,E,A在同一直線上,D,E,B在同一直線上測得A處與E處的距離為80 m,C處與D處的距離為34 mC90°,ABE90°,BAE30°.( ≈1.4, ≈1.7)

(1)求旋轉(zhuǎn)木馬E處到出口B處的距離;

(2)求海洋球D處到出口B處的距離(結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題探究:

如圖1ACBDCE均為等邊三角形,點A、D、E在同一直線上,連接BE

1)證明:AD=BE;

2)求∠AEB的度數(shù).

問題變式:

3)如圖2,ACBDCE均為等腰直角三角形,∠ACB=DCE=90°,點A、DE在同一直線上,CMDCEDE邊上的高,連接BE.()請求出∠AEB的度數(shù);()判斷線段CM、AE、BE之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張陽把他和四位同學(xué)的年齡作為一組數(shù)據(jù),計算出平均數(shù)是15,方差是0.4,則10年后張陽等5位同學(xué)的年齡的平均數(shù)和方差分別是(

A.2510.4B.154C.250.4D.150.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,為坐標原點,拋物線分別交軸正半軸于點,交軸負半軸于點,與軸負半軸交于點,且

(1)如圖1,求的值;

(2)如圖是第一象限拋物線上的點,連,過點軸,交的延長線于點,連接于點,若,求點的坐標以及的值;

(3)如圖3,在(2)的條件下,連接是第一象限拋物線上的點(與點不重合),過點的垂線,交軸于點,點軸上(在點的左側(cè)),點在直線上,連接、.若,,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,點CO上一點(與點A,B不重合),過點C作直線PQ,使得∠ACQ=∠ABC

1)求證:直線PQO的切線.

2)過點AADPQ于點D,交O于點E,若O的半徑為2,sinDAC,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個二次函數(shù)的圖象經(jīng)過點A0,1),它的頂點為B1,3).

1)求這個二次函數(shù)的表達式;

2)過點AACAB交拋物線于點C,點P是直線AC上方拋物線上的一點,當△APC面積最大時,求點P的坐標和△APC的面積最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小王計劃批發(fā)山東大櫻桃泰國榴蓮兩個品種的水果共120斤,櫻桃和榴蓮的批發(fā)價分別為32/斤和40/.設(shè)購買了櫻桃x.

(1)若小王批發(fā)這兩種水果正好花費了4400元,那么小王分別購買了多少斤櫻桃和榴蓮?填寫下表,并列方程求解;

品種

批發(fā)價(元)

購買斤數(shù)

小王應(yīng)付的錢數(shù)(元)

櫻桃

32

x

榴蓮

40

(2)設(shè)小王購買兩種水果的總花費為y元,試寫出yx之間的函數(shù)表達式.

(3)若要求所批發(fā)的榴蓮的斤數(shù)不少于櫻桃斤數(shù)的2倍,那么購買櫻桃的數(shù)量為多少時,可使小王的總花費最少?這個最少花費是多少?

查看答案和解析>>

同步練習冊答案