10.某班七個(gè)興趣小組人數(shù)分別為4,4,5,5,x,6,7,已知這組數(shù)據(jù)的平均數(shù)是5,則這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是( 。
A.4,5B.4,4C.5,4D.5,5

分析 根據(jù)眾數(shù)、算術(shù)平均數(shù)、中位數(shù)的概念,結(jié)合題意進(jìn)行求解.

解答 解:∵這組數(shù)據(jù)的平均數(shù)是5,
∴$\frac{4+4+5+5+x+6+7}{7}$=5,
解得:x=4,
這組數(shù)據(jù)按照從小到大的順序排列為:4,4,4,5,5,6,7,
則眾數(shù)為:4,
中位數(shù)為:5.
故選A.

點(diǎn)評(píng) 本題考查了眾數(shù)、算術(shù)平均數(shù)、中位數(shù)的知識(shí):一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù);平均數(shù)是指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個(gè)數(shù);將一組數(shù)據(jù)按照從小到大(或從大到。┑捻樞蚺帕校绻麛(shù)據(jù)的個(gè)數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個(gè)數(shù)是偶數(shù),則中間兩個(gè)數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.計(jì)算:-14+$\sqrt{12}$sin60°+($\frac{1}{2}$)-2-($π-\sqrt{5}$)0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.先化簡(jiǎn),再求值:(2x+1)(2x-1)-(x+1)(3x-2),其中x=$\sqrt{2}-1$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

18.某小學(xué)學(xué)生較多,為了便于學(xué)生盡快就餐,師生約定:早餐一人一份,一份兩樣,一樣一個(gè),食堂師傅在窗口隨機(jī)發(fā)放(發(fā)放的食品價(jià)格一樣),食堂在某天早餐提供了豬肉包、面包、雞蛋、油餅四樣食品.
(1)按約定,“小李同學(xué)在該天早餐得到兩個(gè)油餅”是不可能事件;(可能,必然,不可能)
(2)請(qǐng)用列表或樹狀圖的方法,求出小張同學(xué)該天早餐剛好得到豬肉包和油餅的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

5.一個(gè)不透明的布袋里裝有5個(gè)只有顏色不同的球,其中2個(gè)紅球,3個(gè)白球,從布袋中隨機(jī)摸出一個(gè)球,摸出紅球的概率是( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{2}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.如圖,直線OA:y=$\frac{1}{2}$x的圖象與反比例函數(shù)y=$\frac{k}{x}$(k≠0)在第一象限的圖象交于A點(diǎn),過A點(diǎn)作軸的垂線,垂足為M,已知△OAM的面積為1.
(1)求反比例函數(shù)的解析式;
(2)如果B為反比例函數(shù)在第一象限圖象上的點(diǎn)(點(diǎn)B與點(diǎn)A不重合),且B點(diǎn)的橫坐標(biāo)為1,在x軸上求一點(diǎn)P,使PA+PB最。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.甲、乙兩個(gè)工程隊(duì)參與某小區(qū)7200平方米(外墻保溫)工程招標(biāo),比較這兩個(gè)工程隊(duì)的標(biāo)書發(fā)現(xiàn):乙隊(duì)每天完成的工程量是甲隊(duì)的1.5倍,這樣乙隊(duì)單獨(dú)干比甲隊(duì)單獨(dú)干能提前15天完成任務(wù),求甲隊(duì)在投標(biāo)書上注明的每天完成的工程量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.在建設(shè)兩型社會(huì)的過程中,為推進(jìn)節(jié)能減排,發(fā)展低碳經(jīng)濟(jì),某市某公司以25萬元購(gòu)得某項(xiàng)節(jié)能產(chǎn)品的生產(chǎn)技術(shù)后,再投入100萬元購(gòu)買生產(chǎn)設(shè)備,進(jìn)行該產(chǎn)品的生產(chǎn)加工.已知生產(chǎn)這種產(chǎn)品的成本價(jià)為每件20元.經(jīng)過市場(chǎng)調(diào)研發(fā)現(xiàn),該產(chǎn)品的銷售單價(jià)定在25元到35元之間較為合理,并且該產(chǎn)品的年銷售量y(萬件)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式為:y=$\left\{\begin{array}{l}{40-x}&{(25≤x≤30)}\\{25-0.5x}&{(30<x≤35)}\end{array}\right.$(年獲利=年銷售收入-生產(chǎn)成本-投資成本)
(1)當(dāng)銷售單價(jià)定為26元時(shí),該產(chǎn)品的年銷售量為多少萬件?
(2)求該公司第一年的年獲利W(萬元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式,并說明投資的第一年,該公司是盈利還是虧損?若盈利,最大利潤(rùn)是多少?若虧損,最小虧損是多少?
(3)第二年,該公司決定給希望工程捐款n萬元,該項(xiàng)捐款由兩部分組成:一部分為10萬元的固定捐款;另一部分則為每銷售一件產(chǎn)品,就抽出一元錢作為捐款.若除去第一年的最大獲利(或最小虧損)以及第二年的捐款后,到第二年年底,兩年的總盈利不低于67.5萬元,請(qǐng)你確定此時(shí)銷售單價(jià)的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

8.正六邊形的邊心距為$\sqrt{3}$,則該正六邊形的外接圓半徑為( 。
A.$\sqrt{3}$B.2C.3D.2$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案