【題目】在“母親節(jié)”期間,某校部分團員參加社會公益活動,準備購進一批許愿瓶進行
銷售,并將所得利潤捐給慈善機構(gòu).根據(jù)市場調(diào)查,這種許愿瓶一段時間內(nèi)的銷售量y(個)于銷售單價x(元
/個)之間的對應關系如圖所示.
(1)試判斷y與x之間的函數(shù)關系,并求出函數(shù)關系式;
(2)若許愿瓶的進價為6元/個,按照上述市場調(diào)查銷售規(guī)律,求利潤w(元)與銷售單價x(元/個)之間的
函數(shù)關系式;
(3)若許愿瓶的進貨成本不超過900元,要想獲得最大利潤,試求此時這種許愿瓶的銷售單價,并求出
最大利潤.
【答案】(1)y是x的一次函數(shù),y=-30x+600(2)w=-30x2+780x-3600(3)以15元/個的價格銷售這批許愿瓶可獲得最大利潤1350元
【解析】
(1)觀察可得該函數(shù)圖象是一次函數(shù),設出一次函數(shù)解析式,把其中兩點代入即可求得該函數(shù)解析式,進而把其余兩點的橫坐標代入看縱坐標是否與點的縱坐標相同.
(2)銷售利潤=每個許愿瓶的利潤×銷售量.
(3)根據(jù)進貨成本可得自變量的取值,結(jié)合二次函數(shù)的關系式即可求得相應的最大利潤.
解:(1)y是x的一次函數(shù),設y=kx+b,
∵圖象過點(10,300),(12,240),
∴,解得.∴y=-30x+600.
當x=14時,y=180;當x=16時,y=120,
∴點(14,180),(16,120)均在函數(shù)y=-30x+600圖象上.
∴y與x之間的函數(shù)關系式為y=-30x+600.
(2)∵w=(x-6)(-30x+600)=-30x2+780x-3600,
∴w與x之間的函數(shù)關系式為w=-30x2+780x-3600.
(3)由題意得:6(-30x+600)≤900,解得x≥15.
w=-30x2+780x-3600圖象對稱軸為:.
∵a=-30<0,∴拋物線開口向下,當x≥15時,w隨x增大而減。
∴當x=15時,w最大=1350.
∴以15元/個的價格銷售這批許愿瓶可獲得最大利潤1350元.
科目:初中數(shù)學 來源: 題型:
【題目】《九章算術(shù)》作為古代中國乃至東方的第一部自成體系的數(shù)學專著,與古希臘的《幾何原本》并稱現(xiàn)代數(shù)學的兩大源泉.在《九章算術(shù)》中記載有一問題“今有圓材埋在壁中,不知大。凿忎徶钜淮,鋸道長一尺,問徑幾何?”小輝同學根據(jù)原文題意,畫出圓材截面圖如圖所示,已知:鋸口深為 1寸,鋸道AB=1尺(1尺=10寸),則該圓材的直徑為( )
A.13B.24C.26D.28
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形與,點E在上,且為的中點,點在線段的反向廷長線上.請利用無刻度的直尺按下列要求畫圖(保留畫圖的痕跡).
(1)在圖1中,畫出的中點;
(2)在圖2中,畫出的垂直平分線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某校九年級男生1000米跑的水平,從中隨機抽取部分男生進行測試,并把測試成績分為D、C、B、A四個等次繪制成如圖所示的不完整的統(tǒng)計圖,請你依圖解答下列問題:
(1)a= ,b= ,c= ;
(2)扇形統(tǒng)計圖中表示C等次的扇形所對的圓心角的度數(shù)為 度;
(3)學校決定從A等次的甲、乙、丙、丁四名男生中,隨機選取兩名男生參加全市中學生1000米跑比賽,請用列表法或畫樹狀圖法,求甲、乙兩名男生同時被選中的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OABC的頂點A、C分別在x、y軸的正半軸上,頂點B的坐標為(4,2)點M是邊BC上的一個動點(不與B、C重合),反比例函數(shù) (k>0,x>0)的圖象經(jīng)過點M且與邊AB交于點N,連接MN.
(1)當點M是邊BC的中點時,求反比例函數(shù)的表達式;
(2)在點M的運動過程中,試證明:是一個定值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,且AB為⊙O的直徑.∠ACB的平分線CD交⊙O于點D,過點D作⊙O的切線PD交CA的延長線于點P,過點A作AE⊥CD于點E,過點B作BF⊥CD于點F.
(1)求證:DP∥AB;
(2)試猜想線段AE、EF、BF之間的數(shù)量關系,并加以證明;
(3)若AC=6,BC=8,求線段PD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為響應市政府關于“垃圾不落地市區(qū)更美麗”的主題宣傳活動,某校隨機調(diào)查了部分學生對垃圾分類知識的掌握情況.調(diào)查選項分為“A:非常了解,B:比較了解,C:了解較少,D:不了解”四種,并將調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:
(1)把兩幅統(tǒng)計圖補充完整;
(2)若該校學生有2000名,根據(jù)調(diào)查結(jié)果,估計該!胺浅A私狻迸c“比較了解”的學生共有 名;
(3)已知“非常了解”的同學有3名男生和1名女生,從中隨機抽取2名進行垃圾分類的知識交流,請用畫樹狀圖或列表的方法,求恰好抽到一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某銷售商準備在南充采購一批絲綢,經(jīng)調(diào)查,用10000元采購A型絲綢的件數(shù)與用8000元采購B型絲綢的件數(shù)相等,一件A型絲綢進價比一件B型絲綢進價多100元.
(1)求一件A型、B型絲綢的進價分別為多少元?
(2)若銷售商購進A型、B型絲綢共50件,其中A型的件數(shù)不大于B型的件數(shù),且不少于16件,設購進A型絲綢m件.
①求m的取值范圍.
②已知A型的售價是800元/件,銷售成本為2n元/件;B型的售價為600元/件,銷售成本為n元/件.如果50≤n≤150,求銷售這批絲綢的最大利潤w(元)與n(元)的函數(shù)關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一張三角形紙片如圖甲,其中將紙片沿過點B的直線折疊,使點C落到AB邊上的E點處,折痕為如圖乙再將紙片沿過點E的直線折疊,點A恰好與點D重合,折痕為如圖丙原三角形紙片ABC中,的大小為______
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com