【題目】如圖,在中,,,,則圖中等腰三角形共有( )個

A.3B.4C.5D.6

【答案】D

【解析】

根據(jù)等腰三角形的定義即可找到兩個等腰三角形,然后利用等邊對等角、三角形的內(nèi)角和、三角形外角的性質(zhì)求出圖中各個角的度數(shù),再根據(jù)等角對等邊即可找出所有的等腰三角形.

解:∵,,

∴△ABC和△ADE都是等腰三角形,∠B=C=36°,∠ADE=AED=

∴∠BAD=ADE-∠B=36°,∠CAE=AED-∠C=36°

∴∠BAD=B,∠CAE=C

DA=DB,EA=EC

∴△DAB和△EAC都是等腰三角形

∴∠BAE=BAD+∠DAE=72°,∠CAD=CAE+∠DAE=72°

∴∠BAE=AED,∠CAD=ADE

BA=BE,CA=CD

∴△BAE和△CAD都是等腰三角形

綜上所述:共有6個等腰三角形

故選D

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】為了加強學生的安全意識,某校組織了學生參加安全知識競賽,從中抽取了部分學生成績(得分數(shù)取正

整數(shù),滿分為分)進行統(tǒng)計,已知組的頻數(shù)組的頻數(shù)小,繪制統(tǒng)計頻數(shù)分別直方圖(未完成)

和扇形統(tǒng)計圖如下,

請解答下列問題:

)樣本容量為:__________, 為__________.

為__________, 組所占比例為__________

)補全頻數(shù)分布直方圖.

)若成績在分以上記作優(yōu)秀,全校共有名學生,估計成績優(yōu)秀學生有__________名.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在平面直角坐標系中,四邊形ABCD是菱形,其中B點坐標是(8,2),D點坐標是(0,2),點Ax軸上,則菱形ABCD的周長是(

A.2

B.8

C.8

D.12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=BD,點EF分別是AB、AD上任意的點(不與端點重合),且AE=DF,連接BFDE相交于點G,連接CGBD相交于點H.給出如下幾個結(jié)論:①△AED≌△DFBS四邊形BCDG=;AF=2DF,則BG=6GF;CGBD一定不垂直;⑤∠BGE的大小為定值.

其中正確的結(jié)論個數(shù)為( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們學過的分解因式的方法有提取公因式法、公式法及十字相乘法,但有很多的多項式只用上述方法就無法分解,如,我們細心觀察這個式子就會發(fā)現(xiàn),前兩項符合平方差公式,后兩項可提取公因式,前后兩部分分別分解因式后會產(chǎn)生公因式,然后提取公因式就可以完成整個式子的分解因式了.過程為: ;這種分解因式的方法叫分組分解法.利用這種方法解決下列問題:

1)分解因式:

2三邊,滿足,判斷的形狀.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校為了豐富學生課余生活,開展了“第二課堂”活動,推出了以下四種選修課程:、繪畫;、唱歌;、演講;、書法.學校規(guī)定:每個學生都必須報名且只能選擇其中的一個課程.學校隨機抽查了部分學生,對他們選擇的課程情況進行了統(tǒng)計,并繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合統(tǒng)計圖中的信息解決下列問題:

1)這次抽查的學生人數(shù)是多少人?

2)將條形統(tǒng)計圖補充完整;

3)在扇形統(tǒng)計圖中,求選課程的人數(shù)所對的圓心角的度數(shù);

4)如果該校共有1200名學生,請你估計該校報課程的學生約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解學生的安全意識情況,在全校范圍內(nèi)隨機抽取部分學生進行問卷調(diào)查,根據(jù)調(diào)查結(jié)果,把學生的安全意識分成“淡薄”、“一般”、“較強”、 “很強”四個層次,并繪制成如下兩幅尚不完整的統(tǒng)計圖:

根據(jù)以上信息,解答下列問題:

1)該校有名學生,現(xiàn)要對安全意識為“淡薄”、“一般"的學生強化安全教育,根據(jù)調(diào)查結(jié)果,估計全校需要強化安全教育的學生約有多少名?

2)請將條形統(tǒng)計圖補充完整.

3)求出安全意識為“較強”的學生所占的百分比.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCDAB=CD,點E、FBC上,且BF=CE

1)求證:ABE≌△DCF;

2)試證明:以A、FD、E為頂點的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】是雙曲線上一點,點是雙曲線上一點,軸上有兩點,,平行四邊形的面積為,則的值是________

查看答案和解析>>

同步練習冊答案