如圖,已知O是四邊形ABCD內(nèi)一點,OA=OB=OC,∠ABC=∠ADC=70°,則∠DAO+∠DCO的大小是( )

A.70°
B.110°
C.140°
D.150°
【答案】分析:由已知及四邊形內(nèi)角和知∠DAB+∠DCB=220°,由等腰三角形的性質(zhì)知∠OAB+∠OCB=70°,所以即可求得∠DAO+∠DCO的度數(shù).
解答:解:根據(jù)四邊形的內(nèi)角和定理可得:
∠DAB+∠DCB=220°,
∵OA=OB=OC,∠ABC=∠ADC=70°,
∴∠OAB=∠OBA,∠OCB=∠OBC,
∴∠OAB+∠OCB=70°,
∴∠DAO+∠DCO=220°-70°=150度.
故選D.
點評:本題考查四邊形內(nèi)角和的定理及等腰三角形的性質(zhì),解題時要將二者有機的結(jié)合在一起.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

11、如圖,已知O是四邊形ABCD內(nèi)一點,OA=OB=OC,∠ABC=∠ADC=70°,則∠DAO+∠DCO的大小是
150
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

5、如圖,已知O是四邊形ABCD內(nèi)一點,OA=OB=OC,∠ABC=∠ADC=70°,則∠DAO+∠DCO的大小是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知⊙O是四邊形ABCD的外接圓,直線AD,BC相交于點E,F(xiàn)是弦CD的中點,直線EF交弦AB于點G,求證:
(1)ED•EA=EC•EB;
(2)AG:GB=AE2:BE2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

6、如圖,已知O是四邊形ABCD內(nèi)一點,OA=OB=OC,∠ABC=∠ADC=65°,則∠DAO+∠DCO的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源:2010年河北省承德市中考數(shù)學二模試卷(解析版) 題型:選擇題

如圖,已知O是四邊形ABCD內(nèi)一點,OA=OB=OC,∠ABC=∠ADC=70°,則∠DAO+∠DCO的大小是( )

A.70°
B.110°
C.140°
D.150°

查看答案和解析>>

同步練習冊答案