【題目】在平面直角坐標(biāo)系中,四邊形ABCD的位置如圖所示,解答下列問題:

1)將四邊形ABCD先向左平移4個(gè)單位,再向下平移6個(gè)單位,得到四邊形A1B1C1D1,畫出平移后的四邊形A1B1C1D1

2)將四邊形A1B1C1D1繞點(diǎn)A1逆時(shí)針旋轉(zhuǎn)90°,得到四邊形A1B2C2D2,畫出旋轉(zhuǎn)后的四邊形A1B2C2D2,并寫出點(diǎn)C2的坐標(biāo).

【答案】解:(1)四邊形A1B1C1D1如圖所示;

2)四邊形A1B2C2D2如圖所示,C21,﹣2).

【解析】

試題(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)AB、C、D平移后的對應(yīng)點(diǎn)A1B1、C1、D1的位置,然后順次連接即可.

2)根據(jù)網(wǎng)格結(jié)構(gòu)找出B1、C1、D1繞點(diǎn)A1逆時(shí)針旋轉(zhuǎn)90°的對應(yīng)點(diǎn)B2、C2、D2的位置,然后順次連接即可,再根據(jù)平面直角坐標(biāo)系寫出點(diǎn)C2的坐標(biāo).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖已知拋物線y=ax23ax4a(a0)的圖象與x軸交于A、B兩點(diǎn)(AB的左側(cè)),與y的正半軸交于點(diǎn)C,連結(jié)BC,二次函數(shù)的對稱軸與x軸的交點(diǎn)為E

(1)拋物線的對稱軸與x軸的交點(diǎn)E坐標(biāo)為_____,點(diǎn)A的坐標(biāo)為_____;

(2)若以E為圓心的圓與y軸和直線BC都相切,試求出拋物線的解析式;

(3)(2)的條件下,如圖②Q(m0)x的正半軸上一點(diǎn),過點(diǎn)Qy軸的平行線,與直線BC交于點(diǎn)M,與拋物線交于點(diǎn)N,連結(jié)CN,將△CMN沿CN翻折,M的對應(yīng)點(diǎn)為M′.在圖中探究:是否存在點(diǎn)Q,使得M′恰好落在y軸上?若存在,請求出Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的弦,點(diǎn)C為半徑OA的中點(diǎn),過點(diǎn)CCD⊥OA交弦AB于點(diǎn)E,連接BD,且DE=DB

1)判斷BD與⊙O的位置關(guān)系,并說明理由;

2)若CD=15BE=10tanA=,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】大邑縣某汽車出租公司有若干輛同一型號的貨車對外出租,每輛貨車的日租金實(shí)行淡季、旺季兩種價(jià)格標(biāo)準(zhǔn),旺季每輛貨車的日租金比淡季上漲25%.據(jù)統(tǒng)計(jì),淡季該公司平均每天有10輛貨車未出租,日租金總收入為3200元;旺季所有的貨車每天能全部租出,日租金總收入為6000元.

1)求該出租公司這批對外出租的貨車共有多少輛?

2)經(jīng)市場調(diào)查發(fā)現(xiàn),在旺季如果每輛貨車的日租金每上漲20元,每天租出去的貨車就會減少1輛,不考慮其它因素,該出租公司的日租金總收入最高是多少元?當(dāng)日租金總收入最高時(shí),每天出租貨車多少輛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將正比例函數(shù)ykxk是常數(shù),k≠0)的圖象,沿著y軸的一個(gè)方向平移|k|個(gè)單位后與x軸、y軸圍成一個(gè)三角形,我們稱這個(gè)三角形為正比例函數(shù)ykx的坐標(biāo)軸三角形,如果一個(gè)正比例函數(shù)的圖象經(jīng)過第一、三象限,且它的坐標(biāo)軸三角形的面積為5,那么這個(gè)正比例函數(shù)的解析式是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=4,過對角線BD中點(diǎn)O的直線分別交AB,CD邊于點(diǎn)E,F(xiàn).

(1)求證:四邊形BEDF是平行四邊形;

(2)當(dāng)四邊形BEDF是菱形時(shí),求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C在以AB為直徑的⊙O上,AD與過點(diǎn)C的切線垂直,垂足為點(diǎn)D,AD交⊙O于點(diǎn)E

1)求證:AC平分∠DAB

2)連接BC,若cosCAD,⊙O的半徑為5,求CD、AE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)疫情期間為了切實(shí)抓好停課不停學(xué)活動,借助某軟件平臺隨機(jī)抽取了該校部分學(xué)生的在線學(xué)習(xí)時(shí)間,并將結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.

請你根據(jù)以上信息回答下列問題

1)本次調(diào)查的人數(shù)為  , 學(xué)習(xí)時(shí)間為7小時(shí)的所對的圓心角為 ;

2)補(bǔ)全頻數(shù)分布直方圖;

3)若全校共有學(xué)生1800人,估計(jì)有多少學(xué)生在線學(xué)習(xí)時(shí)間不低于8個(gè)小時(shí).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在讀書月活動中,學(xué)校準(zhǔn)備購買一批課外讀物.為使課外讀物滿足同學(xué)們的需求,學(xué)校就“我最喜愛的課外讀物”從文學(xué)、藝術(shù)、科普和其他四個(gè)類別進(jìn)行了抽樣調(diào)查(每位同學(xué)只選一類),如圖是根

據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計(jì)圖.

請你根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:

(1)本次調(diào)查中,一共調(diào)查了   名同學(xué);

(2)條形統(tǒng)計(jì)圖中,m=   ,n=   ;

(3)扇形統(tǒng)計(jì)圖中,藝術(shù)類讀物所在扇形的圓心角是   度;

(4)學(xué)校計(jì)劃購買課外讀物6000冊,請根據(jù)樣本數(shù)據(jù),估計(jì)學(xué)校購買其他類讀物多少冊比較合理?

查看答案和解析>>

同步練習(xí)冊答案