拋物線y=
1
4
(x+2)2+3
的開(kāi)口方向、對(duì)稱軸、頂點(diǎn)坐標(biāo)是( 。
分析:已知拋物線解析式為頂點(diǎn)式,可根據(jù)頂點(diǎn)式求拋物線的開(kāi)口方向,對(duì)稱軸及頂點(diǎn)坐標(biāo),再選擇正確的答案即可.
解答:解:由y=
1
4
(x+2)2+3
可知,二次項(xiàng)系數(shù)為
1
4
>0,
所以拋物線開(kāi)口向上,對(duì)稱軸為直線x=-2,
頂點(diǎn)坐標(biāo)為(-2,3).
故選D.
點(diǎn)評(píng):本題考查了二次函數(shù)解析式的頂點(diǎn)式與其性質(zhì)的聯(lián)系,根據(jù)二次項(xiàng)系數(shù)的符號(hào)確定開(kāi)口方向,根據(jù)頂點(diǎn)式確定頂點(diǎn)坐標(biāo)及對(duì)稱軸.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

拋物線y=-
1
4
x2+1,y=-
1
4
(x+1)2與拋物線y=-
1
4
(x2+1)的
相同,
不同.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

拋物線y=-
14
(x-1)2+3與y軸交于點(diǎn)A,頂點(diǎn)為B,對(duì)稱軸BC與x軸交于點(diǎn)C.
(1)如圖1.求點(diǎn)A的坐標(biāo)及線段OC的長(zhǎng);
(2)點(diǎn)P在拋物線上,直線PQ∥BC交x軸于點(diǎn)Q,連接BQ.
①若含45°角的直角三角板如圖2所示放置.其中,一個(gè)頂點(diǎn)與點(diǎn)C重合,直角頂點(diǎn)D在BQ上,另一個(gè)頂點(diǎn)E在PQ上.求直線BQ的函數(shù)解析式;
②若含30°角的直角三角板一個(gè)頂點(diǎn)與點(diǎn)C重合,直角頂點(diǎn)D在直線BQ上,另一個(gè)頂點(diǎn)E在PQ上,求點(diǎn)P的坐標(biāo).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•舟山)如圖,在平面直角坐標(biāo)系xOy中,拋物線y=
1
4
(x-m)2-
1
4
m2+m的頂點(diǎn)為A,與y軸的交點(diǎn)為B,連結(jié)AB,AC⊥AB,交y軸于點(diǎn)C,延長(zhǎng)CA到點(diǎn)D,使AD=AC,連結(jié)BD.作AE∥x軸,DE∥y軸.
(1)當(dāng)m=2時(shí),求點(diǎn)B的坐標(biāo);
(2)求DE的長(zhǎng)?
(3)①設(shè)點(diǎn)D的坐標(biāo)為(x,y),求y關(guān)于x的函數(shù)關(guān)系式?②過(guò)點(diǎn)D作AB的平行線,與第(3)①題確定的函數(shù)圖象的另一個(gè)交點(diǎn)為P,當(dāng)m為何值時(shí),以,A,B,D,P為頂點(diǎn)的四邊形是平行四邊形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•淄博)已知:拋物線y=-
1
4
(x+1)2

(1)寫(xiě)出拋物線的對(duì)稱軸;
(2)完成下表;
x -7 -3 1 3
y -9 -1
(3)在下面的坐標(biāo)系中描點(diǎn)畫(huà)出拋物線的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線y=
1
4
(x-1)(x-b)
(b是實(shí)數(shù)且b>2)與x軸的正半軸分別交于點(diǎn)A、B(點(diǎn)A位于點(diǎn)B的左側(cè)),與y軸的正半軸交于點(diǎn)C.

(1)點(diǎn)B的坐標(biāo)為
(b,0)
(b,0)
,點(diǎn)C的坐標(biāo)為
(0,
1
4
b)
(0,
1
4
b)
(用含b的代數(shù)式表示);
(2)若b=8,請(qǐng)你在拋物線上找點(diǎn)P,使得△PAC是直角三角形?如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由;
(3)請(qǐng)你探索,在(1)的結(jié)論下,在第一象限內(nèi)是否存在點(diǎn)Q,使得△QCO、△QOA和△QAB中的任意兩個(gè)三角形均相似(全等可看作相似的特殊情況)?如果存在,求出點(diǎn)Q的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案