【題目】某水果專賣店銷售櫻桃,其進價為每千克元,按每千克元出售,平均每天可售出千克,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價每千克降低元,則平均每天的銷售可增加千克,若該專賣店銷售這種櫻桃要想平均每天獲利元,請回答:

)每千克櫻桃應(yīng)降價多少元?

)在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應(yīng)按原售價的幾折出售?

【答案】14元或6元.(2)九折.

【解析】試題分析:1)設(shè)每千克水果應(yīng)降價x元,利用銷售量×每件利潤=2240元列出方程求解即可;
2)為了讓利于顧客因此應(yīng)下降6元,求出此時的銷售單價即可確定幾折.

試題解析:

)設(shè)每千克水果應(yīng)降價元,

,

,

, ,

答:每千克櫻桃應(yīng)降價元或元.

∵盡可能讓利于顧客,

∴應(yīng)降價元,

則售價為元,

,

答:該店應(yīng)按原價的九折出售.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,E是⊙O外一點,過點E作⊙O的兩條切線ED、EB,切點分別為點D,B,連接AD并延長交BE延長線于點C,連接OE.
(1)試判斷OE與AC的關(guān)系,并說明理由;
(2)填空: ①當∠BAC=時,四邊形ODEB是正方形.
②當∠BAC=30°時, 的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,連接BD,點E,F(xiàn)分別在AB和CD上,連接CE,AF,CE與AF分別交B于點N,M.已知∠AMD=∠BNC.

(1)若∠ECD=60°,求∠AFC的度數(shù);

(2)若∠ECD=∠BAF,試判斷∠ABD與∠BDC之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為實施“農(nóng)村留守兒童關(guān)愛計劃”,某校對全校各班留守兒童的人數(shù)情況進行了統(tǒng)計,發(fā)現(xiàn)各班留守兒童人數(shù)只有1名、2名、3名、4名、5名、6名共六種情況,并制成了如下兩幅不完整的統(tǒng)計圖:
(1)將該條形統(tǒng)計圖補充完整;
(2)求該校平均每班有多少名留守兒童?
(3)某愛心人士決定從只有2名留守兒童的這些班級中,任選兩名進行生活資助,請用列表法或畫樹狀圖的方法,求出所選兩名留守兒童來自同一個班級的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,所有正方形的中心均在坐標原點,且各邊與x軸或y軸平行,從內(nèi)到外,它們的邊長依次為2,4,6,8 …,頂點依次為A1,A2,A3,A4,A5,…,則頂點A55的坐標是( )

A. (13,13) B. (-13,-13) C. (-14,-14) D. (14,14)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果關(guān)于的分式方程有負分數(shù)解,且關(guān)于的不等式組的解集為,那么符合條件的所有整數(shù)的積是( )

A. B. 0 C. 3 D. 9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)下面對話,可知懶羊羊所買的筆和筆記本的;

價格分別為( )

喜羊羊:懶羊羊,你上周買的筆和筆記本的價格是多少?

懶羊羊:哦,我忘了,只記得先后買了兩次,第一次買了5支筆和10本筆記本共花了42元錢,第二次買了10支筆和5本筆記本共花了30元錢。

A. 0.8/支,2.6/ B. 0.8/支,3.6/

C. 1.2/支,3.6/ D. 1.6/支,3.2/

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校八年級同學到距學校6千米的郊外秋游,一部分同學步行,另一部分同學騎自行車,沿相同路線前往,如圖,L1L2分別表示步行和騎車的同學前往目的地所走的路程y(千米)與所用時間x(分鐘)之間的函數(shù)關(guān)系,則以下判斷錯誤的是( )

A. 騎車的同學比步行的同學晚出發(fā)30分鐘

B. 騎車的同學和步行的同學同時到達目的地

C. 騎車的同學從出發(fā)到追上步行的同學用了20分鐘

D. 步行的速度是6千米/小時.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在四邊形ABCD中,對角線AC、BD相交于點O,將△COD繞點O按逆時針方向旋轉(zhuǎn)得到△C1OD1 , 旋轉(zhuǎn)角為θ(0°<θ<90°),連接AC1、BD1 , AC1與BD1交于點P.
(1)如圖1,若四邊形ABCD是正方形.
①求證:△AOC1≌△BOD1
②請直接寫出AC1 與BD1的位置關(guān)系.

(2)如圖2,若四邊形ABCD是菱形,AC=5,BD=7,設(shè)AC1=kBD1 . 判斷AC1與BD1的位置關(guān)系,說明理由,并求出k的值.

(3)如圖3,若四邊形ABCD是平行四邊形,AC=5,BD=10,連接DD1 , 設(shè)AC1=kBD1 . 請直接寫出k的值和AC12+(kDD12的值.

查看答案和解析>>

同步練習冊答案