【題目】如圖,將矩形ABCD繞點A旋轉至矩形AB′C′D′位置,此時AC′的中點恰好與D點重合,AB′交CD于點E.若AB=6,則△AEC的面積為_____.
【答案】4
【解析】分析:根據(jù)旋轉后AC的中點恰好與D點重合,利用旋轉的性質得到直角三角形ACD中,∠ACD=30°,再由旋轉后矩形與已知矩形全等及矩形的性質得到∠DAE為30°,進而得到∠EAC=∠ECA,利用等角對等邊得到AE=CE,設AE=CE=x,表示出AD與DE,利用勾股定理列出關于x的方程,求出方程的解得到x的值,確定出EC的長,即可求出三角形AEC面積.
詳解:∵旋轉后AC的中點恰好與D點重合,即AD=AC′=AC,
∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,
∴∠DAD′=60°,∴∠DAE=30°,
∴∠EAC=∠ACD=30°,∴AE=CE.
在Rt△ADE中,設AE=EC=x,
則有DE=DC﹣EC=AB﹣EC=6﹣x,AD=×6=2,
根據(jù)勾股定理得:x2=(6﹣x)2+(2)2,
解得:x=4,∴EC=4,
則S△AEC=ECAD=4.
故答案為:4.
科目:初中數(shù)學 來源: 題型:
【題目】已知函數(shù)y =(2m+1) x+ m-3
(1) 若函數(shù)圖象經(jīng)過原點,求m的值.
(2) 若函數(shù)圖象在y軸的交點的縱坐標為-2,求m的值.
(3)若函數(shù)的圖象平行直線y=-3x–3,求m的值.
(4)若這個函數(shù)是一次函數(shù),且y隨著x的增大而減小,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,等邊三角形ABC中,D、E分別是BC、AC上的點,且AE=CD,
(1)求證:AD=BE
(2)求:∠BFD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】類比學習:一動點沿著數(shù)軸向右平移3個單位,再向左平移個單位,相當于向右平移1個單位.用實數(shù)加法表示為 .
若坐標平面上的點作如下平移:沿軸方向平移的數(shù)量為(向右為正,向左為負,平移個單位),沿軸方向平移的數(shù)量為(向上為正,向下為負,平移個單位),則把有序數(shù)對{,}叫做這一平移的“平移量”;“平移量”{,}與“平移量”{,}的加法運算法則為.
解決問題:(1)計算:{3,1}+{1,2};{1,2}+{3,1}.
(2)①動點P從坐標原點O出發(fā),先按照“平移量”{3,1}平移到A,再按照“平移量”{1,2}平移到B;若先把動點P按照“平移量”{1,2}平移到C,再按照“平移量”{3,1}平移,最后的位置還是點B嗎?在圖中畫出四邊形OABC.
②證明四邊形OABC是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系可中,直線y=x+1與y=﹣x+3交于點A,分別交x軸于點B和點C,點D是直線AC上的一個動點.
(1)求點A,B,C的坐標;
(2)在直線AB上是否存在點E使得四邊形EODA為平行四邊形?存在的話直接寫出的值,不存在請說明理由;
(3)當△CBD為等腰三角形時直接寫出D坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】10袋小麥稱重后記錄如下(單位:kg).88.8,91,91.5,89,91.2,91.3,88.9,91.2,91,91.1.
(1)如果每袋小麥以90 kg為標準,超過的千克數(shù)記作正數(shù),不足的千克數(shù)記作負數(shù),這10袋小麥總計超過多少千克或不足多少千克?
(2)10袋小麥一共多少千克?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學七、八年級各選派10名選手參加知識競賽,計分采用10分制,選手得分均為整數(shù),成績達到6分或6分以上為合格,達到9分或10分為優(yōu)秀.這次競賽后,七、八年級兩支代表隊選手成績分布的條形統(tǒng)計圖和成績統(tǒng)計分析表如下,其中七年級代表隊得6分、10分選手人數(shù)分別為a,b.
(1)請依據(jù)圖表中的數(shù)據(jù),求a,b的值.
(2)直接寫出表中的m= ,n= .
(3)有人說七年級的合格率、優(yōu)秀率均高于八年級,所以七年級隊成績比八年級隊好,但也有人說八年級隊成績比七年級隊好.請你給出兩條支持八年級隊成績好的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一組數(shù)據(jù)6,3,4,7,6,3,5,6,求:
(1)這組數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù);
(2)這組數(shù)據(jù)的方差和標準差.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,轉盤被等分成六個扇形,并在上面一次寫上數(shù)字1、2、3、4、5、6;若自由轉動轉盤,當它停止轉動時,求:
(1)指針指向4的概率;
(2)指針指向數(shù)字是奇數(shù)的概率;
(3)指針指向數(shù)字不小于5的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com