如圖,直線y=x+m和拋物線y=x2+bx+c都經(jīng)過(guò)點(diǎn)A(2,0),B(5,3).
(1)求m的值和拋物線的解析式;
(2)求不等式ax2+bx+c≤x+m的解集(直接寫(xiě)出答案);
(3)若拋物線與y軸交于C,求△ABC的面積.
(1)∵直線y=x+m經(jīng)過(guò)A點(diǎn),
∴當(dāng)x=2時(shí),y=0,
∴m+2=0,
∴m=-2,
∵拋物線y=x2+bx+c過(guò)A(2,0),B(5,3),
4+2b+c=0
25+5b+c=3
,
解得
b=-6
c=8
,
∴拋物線的解析式為y=x2-6x+8;

(2)由圖可知,不等式ax2+bx+c≤x+m的解集為2≤x≤5;

(3)設(shè)直線AB與y軸交于D,
∵A(2,0)B(5,3),
∴直線AB的解析式為y=x-2,
∴點(diǎn)D(0,-2),
由(1)知C(0,8),
∴S△BCD=
1
2
×10×5=25,
∵S△ACD=
1
2
×10×2=10,
∴S△ABC=S△BCD-S△ACD=25-10=15.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個(gè)頂點(diǎn)B(4,0)、C(8,0)、D(8,8).拋物線y=ax2+bx過(guò)A、C兩點(diǎn).
(1)直接寫(xiě)出點(diǎn)A的坐標(biāo),并求出拋物線的解析式;
(2)動(dòng)點(diǎn)P從點(diǎn)A出發(fā).沿線段AB向終點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)C出發(fā),沿線段CD向終點(diǎn)D運(yùn)動(dòng).速度均為每秒1個(gè)單位長(zhǎng)度,運(yùn)動(dòng)時(shí)間為t秒.過(guò)點(diǎn)P作PE⊥AB交AC于點(diǎn)E.
①過(guò)點(diǎn)E作EF⊥AD于點(diǎn)F,交拋物線于點(diǎn)G.當(dāng)t為何值時(shí),線段EG最長(zhǎng)?
②連接EQ.在點(diǎn)P、Q運(yùn)動(dòng)的過(guò)程中,判斷有幾個(gè)時(shí)刻使得△CEQ是等腰三角形?請(qǐng)直接寫(xiě)出相應(yīng)的t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,排球運(yùn)動(dòng)員站在點(diǎn)O處練習(xí)發(fā)球,將球從O點(diǎn)正上方2m的A處發(fā)出,把球看成點(diǎn),其運(yùn)行的高度y(m)與運(yùn)行的水平距離x(m)滿(mǎn)足關(guān)系式y(tǒng)=a(x-6)2+h.已知球網(wǎng)與O點(diǎn)的水平距離為9m,高度為2.43m,球場(chǎng)的邊界距O點(diǎn)的水平距離為18m.
(1)當(dāng)h=2.6時(shí),求y與x的關(guān)系式(不要求寫(xiě)出自變量x的取值范圍)
(2)當(dāng)h=2.6時(shí),球能否越過(guò)球網(wǎng)?球會(huì)不會(huì)出界?請(qǐng)說(shuō)明理由;
(3)若球一定能越過(guò)球網(wǎng),又不出邊界,求h的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖是一個(gè)拋物線形拱橋的示意圖,橋的跨度AB為100米,支撐橋的是一些等距的立柱,相鄰立柱的水平距離為10米(不考慮立柱的粗細(xì)),其中距A點(diǎn)10米處的立柱FE的高度為3.6米.
(1)求正中間的立柱OC的高度;
(2)是否存在一根立柱,其高度恰好是OC的一半?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在第一象限內(nèi)作射線OC,與x軸的夾角為30°,在射線OC上取點(diǎn)A,過(guò)點(diǎn)A作AH⊥x軸于點(diǎn)H.在拋物線y=x2(x>0)上取點(diǎn)P,在y軸上取點(diǎn)Q,使得以P,O,Q為頂點(diǎn),且以點(diǎn)Q為直角頂點(diǎn)的三角形與△AOH全等,則符合條件的點(diǎn)A的坐標(biāo)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知如圖拋物線l1與x軸的交點(diǎn)的坐標(biāo)為(-1,0)和(-5,0),與y軸的交點(diǎn)坐標(biāo)為(0,2.5).
(1)求拋物線l1的解析式;
(2)拋物線l2與拋物線l1關(guān)于原點(diǎn)對(duì)稱(chēng),現(xiàn)有一身高為1.5米的人撐著傘與拋物線l2的對(duì)稱(chēng)軸重合,傘面弧AB與拋物線l2重合,頭頂最高點(diǎn)C與傘的下沿AB在同一條直線上(如圖所示不考慮其他因素),如果雨滴下降的軌跡是沿著直線y=mx+b運(yùn)動(dòng),那么不被淋到雨的m的取值范圍是多少?
(3)將傘的下沿AB沿著拋物線l2對(duì)稱(chēng)軸上升10厘米至A1B1,A1B1比AB長(zhǎng)8厘米,拋物線l2除頂點(diǎn)M不動(dòng)外仍經(jīng)過(guò)弧A1B1(其余條件不變),那么被雨淋到的幾率是擴(kuò)大了還是縮小了,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知二次函數(shù)y=ax2+bx+c的圖象過(guò)點(diǎn)A(2,4),頂點(diǎn)的橫坐標(biāo)為
1
2
,它的圖象與x軸交于兩點(diǎn)B(x1,0)、C(x2,0),與y軸交于點(diǎn)D,且x12+x22=13.試問(wèn):y軸上是否存在點(diǎn)P,使得△POB與△DOC相似(O為坐標(biāo)原點(diǎn))?若存在,請(qǐng)求出過(guò)P、B兩點(diǎn)直線的解析式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,那么這個(gè)函數(shù)的解析式為( 。
A.y=
1
3
x2+
2
3
x+1
B.y=
1
3
x2+
2
3
x-1
C.y=
1
3
x2-
2
3
x-1
D.y=
1
3
x2-
2
3
x+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,平行于x軸的直線AC分別交拋物線y1=x2(x≥0)與y2=
x2
3
(x≥0)于B、C兩點(diǎn),過(guò)點(diǎn)C作y軸的平行線交y1于點(diǎn)D,直線DEAC,交y2于點(diǎn)E,則
DE
AB
=______.

查看答案和解析>>

同步練習(xí)冊(cè)答案