如圖,平行于x軸的直線AC分別交拋物線y1=x2(x≥0)與y2=
x2
3
(x≥0)于B、C兩點,過點C作y軸的平行線交y1于點D,直線DEAC,交y2于點E,則
DE
AB
=______.
設設A點坐標為(0,a),(a>0),
則x2=a,解得x=
a
,
∴點B(
a
,a),
x2
3
=a,
則x=
3a
,
∴點C(
3a
,a),
∵CDy軸,
∴點D的橫坐標與點C的橫坐標相同,為
3a
,
∴y1=
3a
2=3a,
∴點D的坐標為(
3a
,3a),
∵DEAC,
∴點E的縱坐標為3a,
x2
3
=3a,
∴x=3
a
,
∴點E的坐標為(3
a
,3a),
∴DE=3
a
-
3a
,
DE
AB
=
3
a
-
3a
a
=3-
3

故答案為:3-
3
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

正常水位時,拋物線拱橋下的水面寬為20m,水面上升3m達到該地警戒水位時,橋下水面寬為10m.
(1)在恰當?shù)钠矫嬷苯亲鴺讼抵星蟪鏊娴綐蚩醉敳康木嚯xy(m)與水面寬x(m)之間的函數(shù)關系式;
(2)如果水位以0.2m/h的速度持續(xù)上漲,那么達到警戒水位后,再過多長時間此橋孔將被淹沒?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直線y=x+m和拋物線y=x2+bx+c都經過點A(2,0),B(5,3).
(1)求m的值和拋物線的解析式;
(2)求不等式ax2+bx+c≤x+m的解集(直接寫出答案);
(3)若拋物線與y軸交于C,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,點A的坐標為(1,
3
),△AOB的面積是
3

(1)求點B的坐標;
(2)求過點A、O、B的拋物線的解析式;
(3)在(2)中拋物線的對稱軸上是否存在點C,使△AOC的周長最小?若存在,求出點C的坐標;若不存在,請說明理由;
(4)在(2)中x軸下方的拋物線上是否存在一點P,過點P作x軸的垂線,交直線AB于點D,線段OD把△AOB分成兩個三角形,使其中一個三角形面積與四邊形BPOD面積比為2:3?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=-
1
2
x2+bx+4
與x軸和y軸的正半軸分別交于點A和B,已知A點坐標為(4,0).
(1)求拋物線的解析式.
(2)如圖,連接AB,M為AB的中點,∠PMQ在AB的同側以M為中心旋轉,且∠PMQ=45°,MP交y軸于點C,MQ交x軸于點D.設AD的長為m(m>0),BC的長為n,求n和m之間的函數(shù)關系式.
(3)若拋物線y=-
1
2
x2+bx+4
上有一點F(-k-1,-k2+1),當m,n為何值時,∠PMQ的邊過點F?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,一邊靠校園圍墻,其他三邊用總長為40米的鐵欄桿圍成一個矩形花圃,設矩形ABCD的邊AB為x米,面積為S平方米,要使矩形ABCD面積最大,則x的長為(  )
A.10米B.15米C.20米D.25米

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在一面靠墻的空地上用長為24米的籬笆,圍成中間隔有二道籬笆的長方形花圃,墻的最大可用長度為8米,設花圃的寬AB為x米,面積為S平方米.
(1)求S與x的函數(shù)關系式;
(2)求自變量的取值范圍;
(3)當x取何值時所圍成的花圃面積最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在△ABC中,∠C=90°,AC=4,BC=2,點A、C分別在x軸、y軸上,當點A在x軸上運動時,點C隨之在y軸上運動,在運動過程中,點B到原點的最大距離是( 。
A.6B.2
6
C.2
5
D.2
2
+2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系xoy中,拋物線y=x2向左平移1個單位,再向下平移4個單位,得到拋物線y=(x-h)2+k,所得拋物線與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,頂點為D.
(1)求h、k的值;
(2)判斷△ACD的形狀,并說明理由;
(3)在線段AC上是否存在點M,使△AOM與△ABC相似?若存在,求出點M的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案