【題目】某工廠計(jì)劃生產(chǎn)A、B兩種產(chǎn)品共10件,其生產(chǎn)成本和利潤(rùn)如下表:

(1)若工廠計(jì)劃獲利14萬(wàn)元,問(wèn)A、B兩種產(chǎn)品應(yīng)分別生產(chǎn)多少件?

(2)若工廠投入資金不多于44萬(wàn)元,且獲利多于14萬(wàn)元,問(wèn)工廠有哪幾種生產(chǎn)方案?

(3)(2)條件下,哪種方案獲利最大?并求最大利潤(rùn).

【答案】(1)A產(chǎn)品生產(chǎn)6件,B產(chǎn)品生產(chǎn)4件.(2)所以方案一:A生產(chǎn)3件B生產(chǎn)7件;方案二:A生產(chǎn)4件,B生產(chǎn)6件;方案三:A生產(chǎn)5件,B生產(chǎn)5件.(3)第一種方案獲利最大17萬(wàn)元.

【解析】1)設(shè)A種產(chǎn)品x,B種為(10x)件根據(jù)共獲利14萬(wàn)元,列方程求解.

2)設(shè)A種產(chǎn)品x,B種為(10x)件,根據(jù)若工廠投入資金不多于44萬(wàn)元,且獲利多于14萬(wàn)元,列不等式組求解.

3設(shè)A種產(chǎn)品x所獲利潤(rùn)為y萬(wàn)元,求出利潤(rùn)的表達(dá)式,利用一次函數(shù)的性質(zhì)求解即可

1)設(shè)A種產(chǎn)品xB種為(10x)件,x+210x)=14解得x=6

A生產(chǎn)6,B生產(chǎn)4

2)設(shè)A種產(chǎn)品x,B種為(10x)件,根據(jù)題意得

,

解得3x6

x為正整數(shù),∴有三種方案,具體如下

方案一A生產(chǎn)3 B生產(chǎn)7

方案二A生產(chǎn)4,B生產(chǎn)6;

方案三A生產(chǎn)5,B生產(chǎn)5件.

3)第一種方案獲利最大.

設(shè)A種產(chǎn)品x,所獲利潤(rùn)為y萬(wàn)元y=x+210x)=﹣x+20

k=﹣10,yx的增大而減小,∴當(dāng)x=3時(shí),獲利最大,3×1+7×2=17,最大利潤(rùn)是17萬(wàn)元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解全校1800名學(xué)生對(duì)學(xué)校設(shè)置的體操、球類、跑步、踢毽子等課外體育活動(dòng)項(xiàng)目的喜愛(ài)情況,在全校范圍內(nèi)隨機(jī)抽取了若干名學(xué)生.對(duì)他們最喜愛(ài)的體育項(xiàng)目(每人只選一項(xiàng))進(jìn)行了問(wèn)卷調(diào)查,將數(shù)據(jù)進(jìn)行了統(tǒng)計(jì)并繪制成了如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖(均不完整).

1)補(bǔ)全頻數(shù)分布直方圖;

2)求扇形統(tǒng)計(jì)圖中表示踢毽子項(xiàng)目扇形圓心角的度數(shù).

3)估計(jì)該校1800名學(xué)生中有多少人最喜愛(ài)球類活動(dòng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某餐廳計(jì)劃購(gòu)買12張餐桌和一批椅子(不少于12把),現(xiàn)從甲、乙兩商場(chǎng)了解到同一型號(hào)的餐桌報(bào)價(jià)都為每張200元,餐椅報(bào)價(jià)都為每把50元.甲商場(chǎng)規(guī)定:每購(gòu)買一張餐桌贈(zèng)送一把餐椅;乙商場(chǎng)規(guī)定:所有餐桌、餐椅均按報(bào)價(jià)的八五折銷售,那么,什么情況下到甲商場(chǎng)購(gòu)買更優(yōu)惠.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】高速公路的同一側(cè)有A、B兩城鎮(zhèn),如圖,它們到高速公路所在直線MN的距離分別為AA′=2 km,BB′=4 km,A′B′=8 km.要在高速公路上A′、B′之間建一個(gè)出口P,使A、B兩城鎮(zhèn)到P的距離之和最。筮@個(gè)最短距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線,一圓交直線a,b分別于AB、CD四點(diǎn),點(diǎn)P是圓上的一個(gè)動(dòng)點(diǎn),連接PA、PC.

(1)如圖1,直接寫(xiě)出∠PAB、∠PCD、∠P之間的數(shù)量關(guān)系為    ;

(2)如圖2,直接寫(xiě)出∠PAB、∠PCD、∠P之間的數(shù)量關(guān)系為   

(3)如圖3,求證:∠P=∠PAB+PCD

(4)如圖4,直接寫(xiě)出∠PAB、∠PCD、∠P之間的數(shù)量關(guān)系為    .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC,ACB=90°,點(diǎn)GABC的重心AGCG,CG的延長(zhǎng)線交ABH

1求證CAG∽△ABC

2SAGHSABC的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某區(qū)教育部門準(zhǔn)備在七年級(jí)開(kāi)設(shè)興趣課堂,以豐富學(xué)生課余生活.為了了解學(xué)生對(duì)音樂(lè)、書(shū)法、球類、繪畫(huà)這四個(gè)興趣小組的喜愛(ài)情況,在全區(qū)進(jìn)行隨機(jī)抽樣調(diào)查,并根據(jù)收集的數(shù)據(jù)繪制了下面兩幅統(tǒng)計(jì)圖(信息不完整),請(qǐng)根據(jù)圖中提供的信息,解答下面的問(wèn)題:

(1) 此次共調(diào)查了 名同學(xué);

(2) 將條形圖補(bǔ)充完整,計(jì)算扇形統(tǒng)計(jì)圖中音樂(lè)部分的圓心角的度數(shù)是 ;

(3) 如果該區(qū)七年級(jí)共有2 000名學(xué)生參加這4個(gè)課外興趣小組,而每名教師最多只能輔導(dǎo)本組的20名學(xué)生,則繪畫(huà)興趣小組至少需要準(zhǔn)備多少名教師?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在ABCD中,E,F(xiàn)分別在BC,AD上,若想使四邊形AFCE為平行四邊形,須添加一個(gè)條件,這個(gè)條件可以是(

AF=CF;AE=CF;③∠BAE=FCD;④∠BEA=FCE。

A. ①或② B. ②或③ C. ③或④ D. ①或③或④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1解方程: 3yy﹣1=2﹣2y

2如圖,△ABC中,CD是邊AB上的高,且.求∠ACB的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案