【題目】如圖,菱形ABCD對(duì)角線交于點(diǎn)E,△ABD的外接圓⊙O交AC于點(diǎn)F.若FB=FC.
(1)證明:=FEFA;
(2)證明:BC是⊙O的切線;
(3)若EF=2,求出四邊形ABCD的面積.
【答案】(1)見解析;(2)見解析;(3)
【解析】
(1)首先根據(jù)菱形的性質(zhì)和圓周角定理的推論得出△BEF∽△ABF,則有,即,又因?yàn)?/span>FB=FC,則結(jié)論可證;
(2)首先根據(jù)等腰三角形的性質(zhì)和等量代換得出∠ABO=∠FBC,又因?yàn)椤?/span>ABO+∠FBO=∠ABF=90°,則有∠CBF+∠FBO =90°,進(jìn)而可證明結(jié)論;
(3)首先根據(jù)三角形外角的性質(zhì)和三角形內(nèi)角和定理得出∠BAF=30°,∠BFA =60°,然后解直角三角形可求出AE,BE的長(zhǎng)度,進(jìn)而可求AC,BD的長(zhǎng)度,最后利用菱形的面積公式即可求解.
(1)證明:∵四邊形ABCD是菱形,
∴AC垂直平分BD,
∵AF為⊙O的直徑.
∴∠ABF=90°.
,
∴△BEF∽△ABF.
∴.
∴.
∵FB=FC,
∴=FEFA;
(2)證明:連接OB,
∵OB=OA,FB=FC,BA=BC,
∴∠OBA=∠BAC,∠FBC=∠FCB,∠BAC=∠BCA.
∴∠ABO=∠FBC.
∵∠ABO+∠FBO=∠ABF=90°.
∴∠CBF+∠FBO =90°.
∴OB⊥BC.
∴BC是⊙O的切線;
(3)解:由(2)得∠BAC=∠BCA=∠FBC.
∴∠BFA=∠FBC+∠FCB=2∠FCB=2∠BAC.
∵∠BAF+∠BFA=180°-∠ABF=90°.
∴3∠BAF=90°.
∴∠BAF=30°.
∴∠BFA=2∠BAF=60°.
在Rt△BFE中,BE=EFtan∠BFE=2=.
在Rt△BAE中,AE=.
∴AC=2AE=12,BD=2BE=.
∴四邊形ABCD的面積S=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=4,點(diǎn)E是A邊上一點(diǎn),且AE=,點(diǎn)F是邊BC上的任意一點(diǎn),把△BEF沿EF翻折,點(diǎn)B的對(duì)應(yīng)點(diǎn)為G,連接AG,CG,則四邊形AGCD的面積的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中學(xué)生上學(xué)帶手機(jī)的現(xiàn)象越來越受到社會(huì)的關(guān)注,為此媒體記者隨機(jī)調(diào)查了某校若干名學(xué)生上學(xué)帶手機(jī)的目的,分為四種類型:A接聽電話;B收發(fā)短信;C查閱資料;D游戲聊天.并將調(diào)查結(jié)果繪制成圖1和圖2的統(tǒng)計(jì)圖(不完整),請(qǐng)根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;
(2)將圖1、圖2補(bǔ)充完整;
(3)現(xiàn)有4名學(xué)生,其中A類兩名,B類兩名,從中任選2名學(xué)生,求這兩名學(xué)生為同一類型的概率(用列表法或樹狀圖法).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC中,D是邊BC上的一點(diǎn),且BD:DC=1:3,把△ABC折疊,使點(diǎn)A落在邊BC上的點(diǎn)D處,那么的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在RT△ABC中,∠ACB=90°,AC=6,BC=8,矩形CDEF的頂點(diǎn)E為AB的中點(diǎn),D,F兩點(diǎn)分別在邊AC,BC上,且,將矩形CDEF以每秒1個(gè)單位長(zhǎng)度的速度沿射線CB方向勻速運(yùn)動(dòng),當(dāng)點(diǎn)C與點(diǎn)B重合時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,矩形CDEF與△ABC重疊部分的面積為S,則反映S與t的函數(shù)關(guān)系的圖象為( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校計(jì)劃廠家購買A、B兩種型號(hào)的電腦,已知每臺(tái)A種型號(hào)電腦比每臺(tái)B種型號(hào)電腦多01.萬元,且用10萬元購買A種型號(hào)電腦的數(shù)量與用8萬元購買B種型號(hào)電腦的數(shù)量相同;
(1)求A、B兩種型號(hào)電腦單價(jià)各為多少萬元?
(2)學(xué)校預(yù)計(jì)用不多于9.2萬元的資金購進(jìn)20臺(tái)電腦,其中A種型號(hào)電腦至少要購進(jìn)10臺(tái),請(qǐng)問有哪幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC為矩形ABCD的對(duì)角線,將邊AB沿AE折疊,使點(diǎn)B落在AC上的點(diǎn)M處,將邊CD沿CF折疊,使點(diǎn)D落在AC上的點(diǎn)N處.
(1)求證:四邊形AECF是平行四邊形;
(2)當(dāng)AB與AC滿足怎樣數(shù)量關(guān)系時(shí),四邊形AECF為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD的四個(gè)頂點(diǎn)分別在反比例函數(shù)與的圖象上,對(duì)角線軸,且于點(diǎn)P.已知點(diǎn)B的橫坐標(biāo)為4.
(1)若點(diǎn)P的縱坐標(biāo)為2,求直線AB的函數(shù)表達(dá)式.
(2)若點(diǎn)P是BD的中點(diǎn),試判斷四邊形ABCD的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知銳角∠AOB如圖,(1)在射線OA上取一點(diǎn)C,以點(diǎn)O為圓心,OC長(zhǎng)為半徑作,交射線OB于點(diǎn)D,連接CD;
(2)分別以點(diǎn)C,D為圓心,CD長(zhǎng)為半徑作弧,交于點(diǎn)M,N;
(3)連接OM,MN.
根據(jù)以上作圖過程及所作圖形,下列結(jié)論中錯(cuò)誤的是( )
A. ∠COM=∠CODB. 若OM=MN,則∠AOB=20°
C. MN∥CDD. MN=3CD
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com