【題目】已知二次函數(shù)y=x2kx+k–1k2).

1)求證:拋物線y=x2kx+k-1k2)與x軸必有兩個交點;

2)拋物線與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,若ΔOAC的面積是,求拋物線的解析式.

【答案】1)詳見解析;(2y=x2-4x+3

【解析】

1)先計算判別式的值得到△=(k2)2,利用k2,可判斷△>0,于是根據(jù)△=b24ac0時,拋物線與x軸有2個交點即可得到結(jié)論;

2)根據(jù)拋物線與x軸的交點問題,解方程x2kx+k1=0x=k1x=1,利用k2,點A在點B的左側(cè)得到A(1,0)B(k1,0),再表示出C(0,k1),然后根據(jù)ΔOAC的面積是,解方程求出k即可得到拋物線的表達(dá)式.

1)∵△=(k)24×1×(k1)=(k2)2,

又∵k2,

(k2)20,即△>0,

∴拋物線y=x2kx+k1x軸必有兩個交點;

2)∵拋物線y=x2kx+k1x軸交于A、B兩點,

∴令y=0,有x2kx+k1=0,解得:x=k1x=1

k2,點A在點B的左側(cè),

A(10),B(k1,0)

∵拋物線與y軸交于點C

C(0,k1)

,

k-1=3,解得:k=4,

∴拋物線的表達(dá)式為y=x24x+3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,學(xué)校教學(xué)樓對面是一幢實驗樓,小朱在教學(xué)樓的窗口C測得實驗樓頂部D的仰角為20°,實驗樓底部B的俯角為30°,量得教學(xué)樓與實驗樓之間的距離AB30m.求實驗樓的高BD.(結(jié)果精確到1m.參考數(shù)據(jù)tan20°≈0.36,sin20°≈0.34,cos20°≈0.94,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)k是常數(shù))

(1)求此函數(shù)的頂點坐標(biāo).

(2)當(dāng)時,的增大而減小,求的取值范圍.

(3)當(dāng)時,該函數(shù)有最大值,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線經(jīng)過AB,C三點.

(1)求拋物線的解析式。

(2)若點M為第三象限內(nèi)拋物線上一動點,點M的橫坐標(biāo)為m,AMB的面積為S.求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值.

(3)若點P是拋物線上的動點,點Q是直線上的動點,判斷有幾個位置能夠使得點PQ、B、O為頂點的四邊形為平行四邊形,直接寫出相應(yīng)的點Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1.在平面直角坐標(biāo)系中,拋物線軸相交于兩點,頂點為,設(shè)點軸的正半軸上一點,將拋物線繞點旋轉(zhuǎn),得到新的拋物線

求拋物線的函數(shù)表達(dá)式:

若拋物線與拋物線軸的右側(cè)有兩個不同的公共點,求的取值范圍.

如圖2,是第一象限內(nèi)拋物線上一點,它到兩坐標(biāo)軸的距離相等,點在拋物線上的對應(yīng)點,設(shè)上的動點,上的動點,試探究四邊形能否成為正方形?若能,求出的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在等腰直角三角形ABC中,AB=BC,ABC=90°D是平面上一點,連結(jié)BD.將線段BD繞點B逆時針旋轉(zhuǎn)90°得到線段BE,連結(jié)AE,CD

1)在圖1中補(bǔ)全圖形,并證明:AECD

2)當(dāng)點D在平面上運動時,請猜測線段ADCE,ABBD之間的數(shù)量關(guān)系.

3)如圖2,作點A關(guān)于直線BE的對稱點F,連結(jié)AD,DFBF.若AB=11,BD=7AD=14,求線段DF的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,BD是⊙O的弦,延長BD到點C,使DCBD,連接ACEAC上一點,直線EDAB延長線交于點F,若∠CDE=∠DACAC12

1)求⊙O半徑;

2)求證:DE為⊙O的切線;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系內(nèi),以原點O為圓心,1為半徑作圓,點P在直線上運動,過點P作該圓的一條切線,切點為A,則PA的最小值為  

A. 3 B. 2 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了扎實推進(jìn)精準(zhǔn)扶貧工作,某地出臺了民生兜底、醫(yī)保脫貧、教育救助、產(chǎn)業(yè)扶持、養(yǎng)老托管和易地搬遷這六種幫扶措施,每戶貧困戶都享受了25種幫扶措施,現(xiàn)把享受了2種、3種、4種和5種幫扶措施的貧困戶分別稱為A、B、CD類貧困戶.為檢査幫扶措施是否落實,隨機(jī)抽取了若干貧困戶進(jìn)行調(diào)查,現(xiàn)將收集的數(shù)據(jù)繪制成下面兩幅不完整的統(tǒng)計圖:

請根據(jù)圖中信息回答下面的問題:

1)本次抽樣調(diào)查了多少戶貧困戶?

2)抽查了多少戶C類貧困戶?并補(bǔ)全統(tǒng)計圖;

3)若該地共有13000戶貧困戶,請估計至少得到4項幫扶措施的大約有多少戶?

4)為更好地做好精準(zhǔn)扶貧工作,現(xiàn)準(zhǔn)備從D類貧困戶中的甲、乙、丙、丁四戶中隨機(jī)選取兩戶進(jìn)行重點幫扶,請用樹狀圖或列表法求出恰好選中甲和丁的概率.

查看答案和解析>>

同步練習(xí)冊答案