如圖,在矩形ABCD中,M是BC上一動(dòng)點(diǎn),DE⊥AM,E為垂足,3AB=2BC,并且AB,BC的長是方程x2-(k-2)x+2k=0的兩個(gè)根,
(1)求k的值;
(2)當(dāng)點(diǎn)M離開點(diǎn)B多少距離時(shí),△AED的面積是△DEM面積的3倍?請(qǐng)說明理由.

解:(1)根據(jù)題意列方程組得:解得
即3k2-37k+12=0,解得k=12或k=

(2)把k=12或k=分別代入方程x2-(k-2)x+2k=0中,
當(dāng)k=12時(shí)原方程可化為x2-10x+24=0,
解得x=4或x=6,
∵3AB=2BC,∴AB=4,BC=6.
當(dāng)k=時(shí)原方程可化為x2+x+=0,解得x=-或x=-1(不合題意舍去).
故AB=4,BC=6,
∵△AED的面積是△DEM的高相同,
∴△AED的面積是△DEM面積的3倍則AE=3ME,設(shè)
ME=x,則AE=3x,設(shè)BM=y.
在Rt△AED與Rt△MBA中,∵∠ABM=∠AED=90°,∠AMB=∠DAE,故兩三角形相似,
由勾股定理得AB2+BM2=16x2----①,解得BM=
=,即=----②,
整理得x4-4x2+4=0,解得x2=2,x=
于是BM===4.
當(dāng)點(diǎn)M離開點(diǎn)B的距離為4時(shí),△AED的面積是△DEM面積的3倍.
分析:(1)根據(jù)根與系數(shù)的關(guān)系,列出方程組解答;
(2)根據(jù)(1)中k的值解方程,求出AD和BC的長,然后根據(jù)相似三角形的性質(zhì)解答.
點(diǎn)評(píng):此題將動(dòng)點(diǎn)問題與一元二次方程和矩形的性質(zhì)相結(jié)合,通過相似三角形和同高不等底的三角形的性質(zhì),將面積關(guān)系轉(zhuǎn)化為線段的性質(zhì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,AB=4cm,BC=8cm,點(diǎn)P從點(diǎn)A出發(fā)以1cm/s的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)Q從點(diǎn)B出發(fā)以2cm/s的速度向點(diǎn)C運(yùn)動(dòng),設(shè)經(jīng)過的時(shí)間為xs,△PBQ的面積為ycm2,則下列圖象能反映y與x之間的函數(shù)關(guān)系的是( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,點(diǎn)O在對(duì)角線AC上,以O(shè)A的長為半徑的⊙O與AD、AC分別交于點(diǎn)E、F,且∠ACB=∠DCE精英家教網(wǎng)
(1)判斷直線CE與⊙O的位置關(guān)系,并說明理由;
(2)若AB=
2
,BC=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,在矩形 ABCD中,AB=30cm,BC=60cm.點(diǎn)P從點(diǎn)A出發(fā),沿A→B→C→D路線向點(diǎn)D勻速運(yùn)動(dòng),到達(dá)點(diǎn)D后停止;點(diǎn)Q從點(diǎn)D出發(fā),沿 D→C→B→A路線向點(diǎn)A勻速運(yùn)動(dòng),到達(dá)點(diǎn)A后停止.若點(diǎn)P、Q同時(shí)出發(fā),在運(yùn)動(dòng)過程中,Q點(diǎn)停留了1s,圖②是P、Q兩點(diǎn)在折線AB-BC-CD上相距的路程S(cm)與時(shí)間t(s)之間的函數(shù)關(guān)系圖象.
(1)請(qǐng)解釋圖中點(diǎn)H的實(shí)際意義?
(2)求P、Q兩點(diǎn)的運(yùn)動(dòng)速度;
(3)將圖②補(bǔ)充完整;
(4)當(dāng)時(shí)間t為何值時(shí),△PCQ為等腰三角形?請(qǐng)直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,∠AOB=60°,AB=6,則AD=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,AB=4,BC=6,E為線段BC上的動(dòng)點(diǎn)(不與B、C重合).連接DE,作EF⊥DE,EF與AB交于點(diǎn)F,設(shè)CE=x,BF=y.
(1)求y與x的函數(shù)關(guān)系式;
(2)x為何值時(shí),y的值最大,最大值是多少?
(3)若設(shè)線段AB的長為m,上述其它條件不變,m為何值時(shí),函數(shù)y的最大值等于3?

查看答案和解析>>

同步練習(xí)冊(cè)答案