如圖,已知:⊙O的直徑AB與弦AC的夾角∠A=30°,過(guò)點(diǎn)C作⊙O的切線交AB的延長(zhǎng)線于點(diǎn)P.
(1)求證:AC=CP;
(2)若PC=6,求圖中陰影部分的面積(結(jié)果精確到0.1).
(參考數(shù)據(jù):,π=3.14)

【答案】分析:(1)連接OC.根據(jù)圓周角定理即可求得∠COP=2∠ACO=60°,根據(jù)切線的性質(zhì)定理以及直角三角形的兩個(gè)銳角互余,求得∠P=30°,即可證明;
(2)陰影部分的面積即為Rt△OCP的面積減去扇形OCB的面積.
解答:(1)證明:連接OC.
∵AB是⊙O的直徑,
∴AO=OC,
∴∠ACO=∠A=30°.
∴∠COP=2∠ACO=60°.
∵PC切⊙O于點(diǎn)C,
∴OC⊥PC.
∴∠P=30°.
∴∠A=∠P.
∴AC=PC.

(2)解:在Rt△OCP中,tan∠P=,∴OC=2
∵S△OCP=CP•OC=×6×2=且S扇形COB=2π,
∴S陰影=S△OCP-S扇形COB=
點(diǎn)評(píng):綜合運(yùn)用了切線的性質(zhì)定理、圓周角定理以及扇形的面積公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、如圖,在鋪設(shè)鐵軌時(shí),兩條直軌必須是互相平行的,如圖,已知∠1=90°,那么圖中的∠5=
90
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、知O是直如圖,已線AD上的點(diǎn),三個(gè)角∠AOB、∠BOC、∠COD從小到大依次相差20度,則∠AOB=
40
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的長(zhǎng)為(  )
A、1cmB、2cmC、3cmD、4cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、作圖題(尺規(guī)作圖,不寫作法,保留作圖痕跡.)
(下面有2小題,請(qǐng)你任選一題做,兩題都做取高分.)
(1)如圖,已知∠α,求作∠β,使它等于∠α補(bǔ)角的2倍.

(2)如圖,小穎走在一條比直的小路上,小明站在小路外的一點(diǎn)C處,你能幫助小明設(shè)計(jì)一條路線,使這條路線與小穎所走的路線平行嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•咸豐縣二模)如圖,已知在Rt△ABC中,∠ACB=90°,AB=10,分別以AC、BC為直經(jīng)作半圓,面積分別記為S1、S2,則S1+S2的值等于(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案