【題目】如圖,一艘輪船沿AC方向航行,輪船在點(diǎn)A時(shí)測得航線兩側(cè)的兩個(gè)燈塔D、E與航線的夾角相等,當(dāng)輪船到達(dá)點(diǎn)B時(shí)測得這兩個(gè)燈塔與航線的夾角仍然相等,這時(shí)輪船與兩個(gè)燈塔的距離是否相等?為什么?
【答案】見解析
【解析】分析:根據(jù)輪船在點(diǎn)A時(shí)兩個(gè)燈塔與航線的夾角相等可得∠DAB=∠EAB,輪船到達(dá)點(diǎn)B時(shí)兩個(gè)燈塔與航線的夾角仍然相等可得∠1=∠2,再根據(jù)等角的補(bǔ)角相等推出∠3=∠4,然后利用角邊角定理證明△ABD與△ABE全等,然后根據(jù)全等三角形對應(yīng)邊相等即可證明.
本題解析:
到達(dá)點(diǎn)B時(shí)輪船與兩個(gè)燈塔的距離相等。
理由如下:
根據(jù)題意得,∠DAB=∠EAB,∠1=∠2,
∵∠1+∠3=180°,∠2+∠4=180°,
∴∠3=∠4,
在△ABD與△ABE, ,
∴△ABD≌△ABE(ASA),
∴BD=BE.
即,到達(dá)點(diǎn)B時(shí)輪船與兩個(gè)燈塔的距離相等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,AD是角平分線,△ADE是等邊三角形,下列結(jié)論:①AD⊥BC;②EF=FD;③BE=BD.其中正確結(jié)論的個(gè)數(shù)為( )
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小區(qū)為了綠化環(huán)境,計(jì)劃分兩次購進(jìn)A、B兩種花草,第一次分別購進(jìn)A、B兩種花草30棵和15棵,共花費(fèi)675元;第二次分別購進(jìn)A、B兩種花草12棵和5棵.兩次共花費(fèi)940元(兩次購進(jìn)的A、B兩種花草價(jià)格均分別相同).
(1)A、B兩種花草每棵的價(jià)格分別是多少元?
(2)若購買A、B兩種花草共31棵,且B種花草的數(shù)量少于A種花草的數(shù)量的2倍,請你給出一種費(fèi)用最省的方案,并求出該方案所需費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)M(﹣1,﹣2)關(guān)于x軸對稱的點(diǎn)的坐標(biāo)為( )
A. (﹣1,﹣2)B. (1,﹣2)
C. (﹣1,2)D. (1,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在坐標(biāo)系中放置一菱形OABC,已知∠ABC=60°,點(diǎn)B在y軸上,OA=1.將菱形OABC沿x軸的正方向無滑動(dòng)翻轉(zhuǎn),每次翻轉(zhuǎn)60°,連續(xù)翻轉(zhuǎn)2014次,點(diǎn)B的落點(diǎn)依次為B1 , B2 , B3 , …,則B2014的坐標(biāo)為( )
A.(1343,0)
B.(1342,0)
C.(1343.5, )
D.(1342.5, )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市中小學(xué)全面開展“陽光體育”活動(dòng),某校在大課間中開設(shè)了A(體操)、B(乒乓球)、C(毽球)、D(跳繩)四項(xiàng)活動(dòng).為了解學(xué)生最喜歡哪一項(xiàng)活動(dòng),隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了如下兩幅不完整的統(tǒng)計(jì)圖,請根據(jù)統(tǒng)計(jì)圖回答下列問題:
(1)這次被調(diào)查的學(xué)生共有人;
(2)請將統(tǒng)計(jì)圖2補(bǔ)充完整;
(3)統(tǒng)計(jì)圖1中B項(xiàng)目對應(yīng)的扇形的圓心角是度;
(4)已知該校共有學(xué)生1000人,根據(jù)調(diào)查結(jié)果估計(jì)該校喜歡體操的學(xué)生有人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點(diǎn)P在BA的延長線上,PD切⊙O于點(diǎn)D,過點(diǎn)B作BE⊥PD,交PD的延長線于點(diǎn)C,連接AD并延長,交BE于點(diǎn)E.
(1)求證:AB=BE;
(2)連結(jié)OC,如果PD=,∠ABC=,求OC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com