【題目】如圖,DE分別是△ABCAB、BC上的點,AD=2BD,BE=CE.若SΔABC=18,△ADF的面積為,△CFE的面積為,則=________

【答案】3

【解析】

根據(jù)D、E分別是△ABCAB、BC上的點,AD=2BD,BE=CESABC=18,可以得到SADCSAEC的面積,再根據(jù)圖形,即可得到S1-S2的值.

解:∵D、E分別是△ABCAB、BC上的點,AD=2BD,BE=CE,SABC=18,
SADC=18×=12SAEC=18×=9,
SADC=SADF+SAFC,SAEC=SCEF+SAFC
SADC-SAEC=SADF-SCEF,
SADC=12SAEC=9,
SADC-SAEC=3,
SADF-SCEF=3,
∵△ADF的面積為S1,△CEF的面積為S2,
S1-S2=3
故答案為:3

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:用2A型車和1B型車裝滿貨物一次可運貨10噸;用1A型車和2B型車裝滿貨物一次可運貨11噸.某物流公司現(xiàn)有31噸貨物,計劃同時租用A型車輛,B型車輛,一次運完,且恰好每輛車都裝滿貨物. 根據(jù)以上信息,解答下列問題:

11A型車和1B型車都裝滿貨物一次可分別運貨多少噸?

2)請你幫該物流公司設計租車方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A,B,C,D,E,F(xiàn)是邊長為1的正六邊形的頂點,連接任意兩點均可得到一條線段.在連接兩點所得的所有線段中任取一條線段,取到長度為 的線段的概率為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】亞健康是時下社會熱門話題,進行體育鍛煉是遠離亞健康的一種重要方式,為了解某市初中學生每天進行體育鍛煉的時間情況,隨機抽樣調(diào)查了100名涌中學生,根據(jù)調(diào)查結(jié)果得到如圖所示的統(tǒng)計圖表.

類別

時間t(小時)

人數(shù)

A

t≤0.5

5

B

0.5<t≤1

20

C

1<t≤1.5

a

D

1.5<t≤2

30

E

t>2

10

請根據(jù)圖表信息解答下列問題:

(1)a=;
(2)補全條形統(tǒng)計圖;
(3)據(jù)了解該市大約有30萬名初中學生,請估計該市初中學生每天進行體育鍛煉時間在1小時以上的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的對角線相交于點O,點O也是正方形A′B′C′O的一個頂點,如果兩個正方形的邊長都等于1,那么正方形A′B′C′O繞頂點O轉(zhuǎn)動,兩個正方形重疊部分的面積大小有什么規(guī)律?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,AB=AC=5,cos∠ABC= ,將△ABC繞點C順時針旋轉(zhuǎn),得到△A1B1C.
(1)如圖①,當點B1在線段BA延長線上時.①求證:BB1∥CA1;②求△AB1C的面積;

(2)如圖②,點E是BC邊的中點,點F為線段AB上的動點,在△ABC繞點C順時針旋轉(zhuǎn)過程中,點F的對應點是F1 , 求線段EF1長度的最大值與最小值的差.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一枚均勻的正方體骰子,骰子各個面上的點數(shù)分別為1,2,3,4,5,6,若任意拋擲一次骰子,朝上的面的點數(shù)記為x,計算|x﹣3|,則其結(jié)果恰為1的概率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)y= 的圖象經(jīng)過A、B兩點,過點A作AC⊥x軸,垂足為C,過點B作BD⊥x軸,垂足為D,連接AO,連接BO交AC于點E,若OC=CD,四邊形BDCE的面積為1,則k的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩名同學某學期的四次數(shù)學測試成績(單位:分)如下表:

第一次

第二次

第三次

第四次

87

95

85

93

80

80

90

90

據(jù)上表計算,甲、乙兩名同學四次數(shù)學測試成績的方差分別為S2=17、S2=25,下列說法正確的是( )
A.甲同學四次數(shù)學測試成績的平均數(shù)是89分
B.甲同學四次數(shù)學測試成績的中位數(shù)是90分
C.乙同學四次數(shù)學測試成績的眾數(shù)是80分
D.乙同學四次數(shù)學測試成績較穩(wěn)定

查看答案和解析>>

同步練習冊答案