如圖,點(diǎn)E是四邊形ABCD的對角線BD上一點(diǎn),且∠BAC=∠BDC=∠DAE.求證:△ABE∽△ACD.

解:∵∠BAC=∠BDC,∠AOB=∠DOC,
∴∠ABE=∠ACD
又∵∠BAC=∠DAE
∴∠BAC+∠EAC=∠DAE+∠EAC
∴∠DAC=∠EAB
∴△ABE∽△ACD.
分析:先由∠BAC=∠BDC,∠AOB=∠DOC,得出∠ABE=∠ACD,再根據(jù)∠BAC=∠DAE可得出∠DAC=∠EAB,故可得出結(jié)論.
點(diǎn)評:本題考查了三角形的相似性質(zhì)的利用,當(dāng)然還有其他方法,但在解題中,我們要靈活應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點(diǎn)E是四邊形ABCD的對角線BD上的一點(diǎn),且∠BAC=∠BDC=∠DAE.
(1)試說明:BE•AD=CD•AE;
(2)根據(jù)圖形的特點(diǎn),猜想
BCDE
可能等于哪兩條線段的比?并說明你的猜想是正確的.(注:只需寫出圖中已知線段的一組比即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)O是四邊形BCED外接圓的圓心,點(diǎn)O在BC上,點(diǎn)A在CB的延長線上,且∠ADB=∠DEB,精英家教網(wǎng)EF⊥BC于點(diǎn)F,交⊙O于點(diǎn)M,EM=2
5

(1)求證:AD是⊙O的切線;
(2)若弧BM上有一動點(diǎn)P,且DE=
14
,sin∠CPM=
2
3
,求tan∠DBE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,點(diǎn)O是四邊形BCED外接圓的圓心,點(diǎn)O在BC上,點(diǎn)A在CB的延長線上,且∠AD精英家教網(wǎng)B=∠DEB,EF⊥BC于點(diǎn)F,交⊙O于點(diǎn)M,EM=2
5

(1)求證:AD是⊙O的切線;
(2)若弧BM上有一動點(diǎn)P,且sin∠CPM=
2
3
,求⊙O直徑的長;
(3)在(2)的條件下,如果DE=
14
,求tan∠DBE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)P是四邊形ABCD內(nèi)一點(diǎn),分別在邊AB、BC上作出點(diǎn)M,點(diǎn)N,使PM+PN的值最小,保留作圖痕跡,不寫作法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點(diǎn)O是四邊形ABCD與A′B′C′D′的位似中心,則
 
=
 
=
 
;∠ABC=
 
,∠OCB=
 

查看答案和解析>>

同步練習(xí)冊答案