如圖,在⊙O中,AB是弦,OC⊥AB,垂足為C,若AB=16,OC=6,則⊙O的半徑OA=
10
10
分析:連接OA,根據(jù)垂徑定理求出AC,根據(jù)勾股定理求出OA即可.
解答:解:
連接OA,
∵OC⊥AB,OC過O,
∴AC=BC=
1
2
AB=8,
在Rt△AOC中,AC=8,OC=6,由勾股定理得:AO=
OC2+AC2
=10,
故答案為:10.
點(diǎn)評:本題考查了垂徑定理和勾股定理的應(yīng)用,關(guān)鍵是構(gòu)造直角三角形和求出AC長度.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB>AC,E為BC邊的中點(diǎn),AD為∠BAC的平分線,過E作AD的平行線,交AB于F,交CA的延長線于G.
求證:BF=CG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=AC,D為BC邊上一點(diǎn),且∠BAD=30°,若AD=DE,∠EDC=33°,則∠DAE的度數(shù)為
72
72
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=AC,D是△ABC內(nèi)一點(diǎn),且BD=DC.求證:∠ABD=∠ACD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=BC,∠ABC=90°,D是BC的中點(diǎn),且它關(guān)于AC的對稱點(diǎn)是D′,BD′=
5
,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=AC,D點(diǎn)是BC的中點(diǎn),DE⊥AB于E點(diǎn),DF⊥AC于F點(diǎn),則圖中全等三角形共有
3
3
對.

查看答案和解析>>

同步練習(xí)冊答案