【題目】如圖,將矩形紙片ABCD折疊,使點(diǎn)B與點(diǎn)D重合,折痕為MN,若AB=2,BC=4,那么線段MN的長(zhǎng)為( )
A.
B.
C.
D.2
【答案】B
【解析】解:如圖,連接BM,DN
在矩形紙片ABCD中,CD=AB=2,∠C=90°,
在Rt△BCD中,BC=4,
根據(jù)勾股定理得,BD= =2 ,
∴OB= BD= ,
由折疊得,∠BON=90°,ON= MN,BN=DN,
∵BC=BN+CN=4,
∴CN=4﹣BN,
在Rt△CDN中,CD=2,
根據(jù)勾股定理得,CN2+CD2=DN2,
(4﹣BN)2+22=BN2,
∴BN= ,
在Rt△BON中,ON= = ,
∴MN=2ON= ,
故選B.
【考點(diǎn)精析】本題主要考查了矩形的性質(zhì)和翻折變換(折疊問(wèn)題)的相關(guān)知識(shí)點(diǎn),需要掌握矩形的四個(gè)角都是直角,矩形的對(duì)角線相等;折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,對(duì)稱軸是對(duì)應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和角相等才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)幾何圖形的面積關(guān)系可以形象直觀地表示多項(xiàng)式的乘法.例如:(2a+b)(a+b)=2a2+3ab+b2可以用圖(1)表示
(1)根據(jù)圖(2),寫(xiě)出一個(gè)多項(xiàng)式乘以多項(xiàng)式的等式;
(2)從A,B兩題中任選一題作答:
A.請(qǐng)畫(huà)出一個(gè)幾何圖形,表示(x+p)(x+q)=x2+(p+q)x+pq,并仿照上圖標(biāo)明相應(yīng)的字母;
B.請(qǐng)畫(huà)出一個(gè)幾何圖形,表示(x﹣p)(x﹣q)=x2﹣(p+q)x+pq,并仿照上圖標(biāo)明相應(yīng)的字母.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù) 的圖象與x軸交于點(diǎn) A,B,與y軸交于點(diǎn)C.點(diǎn)P是該函數(shù)圖象上的動(dòng)點(diǎn),且位于第一象限,設(shè)點(diǎn)P的橫坐標(biāo)為x.
(1)寫(xiě)出線段AC,BC的長(zhǎng)度:AC= , BC=;
(2)記△BCP的面積為S,求S關(guān)于x的函數(shù)表達(dá)式;
(3)過(guò)點(diǎn)P作PH⊥BC,垂足為H,連結(jié)AH,AP,設(shè)AP與BC交于點(diǎn)K,探究:是否存在四邊形ACPH為平行四邊形?若存在,請(qǐng)求出 的值;若不存在,請(qǐng)說(shuō)明理由,并求出 的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩家超市以相同的價(jià)格出售同樣的商品,為了吸引顧客,各自推出不同的優(yōu)惠方案:在甲超市累計(jì)購(gòu)買商品超出300元之后,超出部分按原價(jià)8折優(yōu)惠;在乙超市累計(jì)購(gòu)買商品超出200元之后,超出部分按原價(jià)8.5折優(yōu)惠.設(shè)顧客預(yù)計(jì)累計(jì)購(gòu)物元().
(1)請(qǐng)用含的代數(shù)式分別表示顧客在兩家超市購(gòu)物所付的費(fèi)用;
(2)李明準(zhǔn)備購(gòu)買500元的商品,你認(rèn)為他應(yīng)該去哪家超市?請(qǐng)說(shuō)明理由;
(3)計(jì)算一下,李明購(gòu)買多少元的商品時(shí),到兩家超市購(gòu)物所付的費(fèi)用一樣?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校以“我最喜愛(ài)的體育運(yùn)動(dòng)”為主題對(duì)全校學(xué)生進(jìn)行隨機(jī)抽樣調(diào)查,調(diào)查的運(yùn)動(dòng)項(xiàng)目有:籃球、羽毛球、乒乓球、跳繩及其他項(xiàng)目(每位同學(xué)僅選一項(xiàng)).根據(jù)調(diào)查結(jié)果繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖:
運(yùn)動(dòng)項(xiàng)目 | 頻數(shù) | 頻率 |
籃球 | 30 | 0.25 |
羽毛球 | m | 0.20 |
乒乓球 | 36 | n |
跳繩 | 18 | 0.15 |
其他 | 12 | 0.10 |
請(qǐng)根據(jù)以上圖表信息,解答下列問(wèn)題:
(1)頻數(shù)分布表中的m=_________,n=_________;
(2)在扇形統(tǒng)計(jì)圖中,“乒乓球”所在的扇形的圓心角的度數(shù)為_(kāi)________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖與都是以為直角頂點(diǎn)的等腰直角三角形, 交于點(diǎn),若, ,當(dāng)是直角三角形時(shí),則的長(zhǎng)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為了開(kāi)發(fā)利用海洋資源,某勘測(cè)飛機(jī)預(yù)測(cè)量一島嶼兩端A、B的距離,飛機(jī)在距海平面垂直高度為100米的點(diǎn)C處測(cè)得端點(diǎn)A的俯角為60°,然后沿著平行于AB的方向水平飛行了500米,在點(diǎn)D測(cè)得端點(diǎn)B的俯角為45°,求島嶼兩端A、B的距離(結(jié)果精確到0.1米,參考數(shù)據(jù): )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,點(diǎn)P為△ABC所在平面內(nèi)一點(diǎn),過(guò)點(diǎn)P分別作PE∥AC交AB于點(diǎn)E,PF∥AB交BC于點(diǎn)D,交AC于點(diǎn)F.
【1】如圖1,若點(diǎn)P在BC邊上,此時(shí)PD=0,易證PD,PE,PF與AB滿足的數(shù)量關(guān)系PD+PE+PF=AB;當(dāng)點(diǎn)P在△ABC內(nèi),先在圖2中作出圖形,并寫(xiě)出PD,PE,PF與AB滿足的數(shù)量關(guān)系,然后證明你的結(jié)論
【2】當(dāng)點(diǎn)P在△ABC外,先在圖3中作出圖形,然后寫(xiě)出PD,PE,PF與AB滿足的數(shù)量關(guān)系.(不用說(shuō)明理由)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com