【題目】在平面直角坐標(biāo)系中,直線與雙曲線相交于點(diǎn).

1)求反比例函數(shù)的表達(dá)式:

2)畫出直線和雙曲線的示意圖;

3)直接寫出的解集______;

4)若點(diǎn)是坐標(biāo)軸負(fù)半軸上一點(diǎn),且滿足.直接寫出點(diǎn)的坐標(biāo)______.

【答案】1;(2)詳見解析;(3;(4

【解析】

(1)將點(diǎn)A代入直線坐標(biāo)中求出m,再將點(diǎn)A代入反比例函數(shù)中求出即可.

(2)根據(jù)題意畫出圖象即可.

(3)由圖象即可看出.

(4)設(shè)P(x,y)代入等式即可算出.

1)∵將A代入直線,m=-1+4=3..

∴反比例函數(shù)的表達(dá)式為:.

2)如圖所示:

3)由上圖可得:

4)設(shè)P點(diǎn)坐標(biāo)(x,y)

OA=,

PA=2OA=2.

PA=

=2.

當(dāng)x=0時(shí),y=;

當(dāng)y=0時(shí),x=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司經(jīng)銷一種成本為10元的產(chǎn)品,經(jīng)市場調(diào)查發(fā)現(xiàn),在一段時(shí)間內(nèi),銷售量(件)與銷售單價(jià) / )的關(guān)系如下表:

15

20

25

30

550

500

450

400

設(shè)這種產(chǎn)品在這段時(shí)間內(nèi)的銷售利潤為(元),解答下列問題:

1)如的一次函數(shù),求的函數(shù)關(guān)系式;

2)求銷售利潤與銷售單價(jià)之間的函數(shù)關(guān)系式;

3)求當(dāng)為何值時(shí),的值最大?最大是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=6,AD=12,點(diǎn)E在AD邊上,且AE=8,EFBE交CD于F.

(1)求證:ABE∽△DEF;

(2)求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在開展學(xué)雷鋒社會(huì)實(shí)踐活動(dòng)中,某校為了解全校1200名學(xué)生參加活動(dòng)的情況,隨機(jī)調(diào)查了50名學(xué)生每人參加活動(dòng)的次數(shù),并根據(jù)數(shù)據(jù)繪成條形統(tǒng)計(jì)圖如下:

)求這50個(gè)樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

)根據(jù)樣本數(shù)據(jù),估算該校1200名學(xué)生共參加了多少次活動(dòng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線

1)若求該拋物線與x軸的交點(diǎn)坐標(biāo);

2)若,是否存在實(shí)數(shù),使得相應(yīng)的y=1,若有,請(qǐng)指明有幾個(gè)并證明你的結(jié)論,若沒有,闡述理由。

3)若且拋物線在區(qū)間上的最小值是-3,求b的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,給出如下定義:若點(diǎn)在圖形上,點(diǎn)在圖形上,如果兩點(diǎn)間的距離有最小值,那么稱這個(gè)最小值為圖形近距離,記為.特別地,當(dāng)圖形與圖形有公共點(diǎn)時(shí),.

已知,,

1點(diǎn),點(diǎn) ,點(diǎn),線段 ;

2)⊙半徑為

①當(dāng)時(shí),求⊙與線段近距離,線段;

②若,則 .

3軸上一點(diǎn),⊙的半徑為1,點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為點(diǎn),⊙近距離,,請(qǐng)直接寫出圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(2,2),B(4,0),C(4,﹣4).

(1)請(qǐng)?jiān)趫D中,畫出ABC向左平移6個(gè)單位長度后得到的△A1B1C1;

(2)以點(diǎn)O為位似中心,將ABC縮小為原來的,得到△A2B2C2,請(qǐng)?jiān)趫D中y軸右側(cè),畫出△A2B2C2,并求出∠A2C2B2的正弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們定義一種新函數(shù):形如的函數(shù)叫做“鵲橋”函數(shù).小麗同學(xué)畫出了“鵲橋”函數(shù)的圖象(如圖所示),并寫出下列五個(gè)結(jié)論:圖象與坐標(biāo)軸的交點(diǎn)為;圖象具有對(duì)稱性,對(duì)稱軸是直線;當(dāng)時(shí),函數(shù)值值的增大而增大;當(dāng)時(shí),函數(shù)的最小值是;當(dāng)時(shí),函數(shù)的最大值是,其中正確結(jié)論的個(gè)數(shù)是( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O過ABCD的三頂點(diǎn)A、D、C,邊AB與O相切于點(diǎn)A,邊BC與O相交于點(diǎn)H,射線AD交邊CD于點(diǎn)E,交O于點(diǎn)F,點(diǎn)P在射線AO上,且PCD=2DAF.

(1)求證:ABH是等腰三角形;

(2)求證:直線PC是O的切線;

(3)若AB=2,AD=,求O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案