【題目】如圖,把兩根鋼條AA′,BB′的中點O連在一起,可以做成一個測量工件內(nèi)槽寬的工具(工人把這種工具叫卡鉗)只要量出A′B′的長度,就可以知道工件的內(nèi)徑AB是否符合標準,你能簡要說出工人這樣測量的道理嗎?

【答案】解:此工具是根據(jù)三角形全等制作而成的!逴是AA′,BB′的中點,
∴AO=A′O,BO=B′O,
又∵∠AOB與∠A′OB′是對頂角,
∴∠AOB=∠A′OB′,
在△AOB和△A′OB′中,

∴△AOB≌△A′OB′(SAS),
∴A′B′=AB,
∴只要量出A′B′的長度,就可以知道工作的內(nèi)徑AB是否符合標準
【解析】根據(jù)已知條件用邊角邊可證△AOB≌△A′OB′,根據(jù)全等三角形的性質(zhì)可得A′B′=AB,則工件的內(nèi)徑AB是否符合標準,可通過量出A′B′的長度來判定。

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某商品的進價為每件20元,售價為每件30元,每個月可賣出180件;如果每件商品的售價每上漲1元,則每個月就會少賣出10件,但每件售價不能高于35元,設(shè)每件商品的售價上漲x元(x為整數(shù)),每個月的銷售利潤為y元.

(1)求y與x的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;求x為何值時y的值為1920?

(2)每件商品的售價為多少元時,每個月可獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形紙片ABCD中,AD=1,AB=2.將紙片折疊,使頂點A與邊CD上的點E重合,折痕FG分別與AB、CD交于點G、F,AE與FG交于點O.當△AED的外接圓與BC相切于BC的中點N.則折痕FG的長為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知E為等腰△ABC的底邊BC上一動點,過E作EF⊥BC交AB于D,交CA的延長線于F,問:

(1)∠F與∠ADF的關(guān)系怎樣?說明理由;
(2)若E在BC延長線上,其余條件不變,上題的結(jié)論是否成立?若不成立,說明理由;若成立,畫出圖形并給予證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個幾何體從前面看及從上面看的視圖如圖所示。這樣的幾何體只有一種嗎?它最多要多少個小立方體?最少要多少個小立方體?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠CAB,交CB于點D,DE⊥AB于點E.

(1)求證:△ACD≌△AED

(2)若AC=5,△DEB的周長為8,求△ABC的周長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點P—1,—2)關(guān)于原點對稱點的坐標是_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB=AC,CD⊥AB于點D,BE⊥AC于點E,BE與CD相交于點O.

(1)求證:AD=AE;
(2)試猜想:OA與BC的位置關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“垂直于同一條直線的兩直線平行”,運用這一性質(zhì)可以說明鋪設(shè)鐵軌互相平行的道理.如圖所示,已知∠2是直角,再度量出∠1或∠3就會知道鐵軌平行不平行?[解答]
方案一:若量得∠3=90°,結(jié)合∠2情況,說明理由.
方案二:若量得∠1=90°,結(jié)合∠2情況,說明理由.

查看答案和解析>>

同步練習冊答案