寫出圖中多邊形ABCDEF各個頂點的坐標(biāo).

解:根據(jù)直角坐標(biāo)系的知識可得:A(-4,4)、B(-7,0)、C(-4,-4)、D(0,-4)、E(3,0)、F(0,4).
分析:根據(jù)平面直角坐標(biāo)系的特點寫出各點的坐標(biāo)即可.
點評:此題考查了坐標(biāo)與圖形的性質(zhì),解答本題的關(guān)鍵是結(jié)合直角坐標(biāo)系,仔細觀察各點的坐標(biāo),難度一般.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1至圖5,⊙O均作無滑動滾動,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O與線段AB或BC相切于端點時刻的位置,⊙O的周長為c.
閱讀理解:
(1)如圖1,⊙O從⊙O1的位置出發(fā),沿AB滾動到⊙O2的位置,當(dāng)AB=c時,⊙O恰好自轉(zhuǎn)1周;
(2)如圖2,∠ABC相鄰的補角是n°,⊙O在∠ABC外部沿A-B-C滾動,在點B處,必須由⊙O1的位置旋轉(zhuǎn)到⊙O2的位置,⊙O繞點B旋轉(zhuǎn)的角∠O1BO2=n°,⊙O在點B處自轉(zhuǎn)
n
360
周.
實踐應(yīng)用:
(1)在閱讀理解的(1)中,若AB=2c,則⊙O自轉(zhuǎn)
 
周;若AB=l,則⊙O自轉(zhuǎn)
 
周.在閱讀理解的(2)中,若∠ABC=120°,則⊙O在點B處自轉(zhuǎn)
 
周;若∠ABC=60°,則⊙O在點B處自轉(zhuǎn)
 
周;
(2)如圖3,∠ABC=90°,AB=BC=
1
2
c.⊙O從⊙O1的位置出發(fā),在∠ABC外部沿A-B-C滾動到⊙O4的位置,⊙O自轉(zhuǎn)
 
周.
拓展聯(lián)想:
(1)如圖4,△ABC的周長為l,⊙O從與AB相切于點D的位置出發(fā),在△ABC外部,按順時針方向沿三角形滾動,又回到與AB相切于點D的位置,⊙O自轉(zhuǎn)了多少周?請說明理由;
(2)如圖5,多邊形的周長為l,⊙O從與某邊相切于點D的位置出發(fā),在多邊形外部,按順時針方向沿多邊形滾動,又回到與該邊相切于點D的位置,直接寫出⊙O自轉(zhuǎn)的周數(shù).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【問題】在正方形網(wǎng)格中,如圖(一),△OAB的頂點分別為O(0,0),A(1,2),B(2,-1).
(1)以點O(0,0)為位似中心,按比例尺3:1在位似中心的同側(cè)將△OAB放大為△OA′B′,放大后點A、B的對應(yīng)點分別為A′、B′.畫出△OA′B′,并寫出點A'、B'的坐標(biāo):A′(
3
3
,
6
6
),B′(
6
6
,
-3
-3
);
(2)在(1)中,若點C(a,b)為線段AB上任一點,寫出變化后點C的對應(yīng)點C′的坐標(biāo)(
3a
3a
,
3b
3b
);
【拓展】在平面內(nèi),先將一個多邊形以點O為位似中心放大或縮小,使所得多邊形與原多邊形對應(yīng)線段的比為k,并且原多邊形上的任一點P,它的對應(yīng)點P'在線段OP或其延長線上;接著將所得多邊形以點O為旋轉(zhuǎn)中心,逆時針旋轉(zhuǎn)一個角度θ,這種經(jīng)過和旋轉(zhuǎn)的圖形變換叫做旋轉(zhuǎn)相似變換,記為O(k,θ),其中點O叫做旋轉(zhuǎn)相似中心,k叫做相似比,θ叫做旋轉(zhuǎn)角.
【探索】如圖(二),完成下列問題:
(3)填空:如圖1,將△ABC以點A為旋轉(zhuǎn)相似中心,放大為原來的2倍,再逆時針旋轉(zhuǎn)60°,得到△ADE,這個旋轉(zhuǎn)相似變換記為A(
2
2
60°
60°
);
(4)如圖2,△ABC是邊長為3cm的等邊三角形,將它作旋轉(zhuǎn)相似變換A(
43
,90°)
,得到△ADE,求線段BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:專項題 題型:解答題

如圖所示①至圖⑤,⊙O均做無滑動滾動,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O與線段AB或BC相切于端點時刻的位置,⊙O的周長為c。
 閱讀理解:
(1)如圖①,⊙O從⊙O1的位置出發(fā),沿AB滾動到⊙O2的位置,當(dāng)AB=c時,⊙O恰好自轉(zhuǎn)1周;
(2)如圖②,∠ABC相鄰的補角是n°,⊙O在∠ABC外部沿A-B-C滾動,在點B處,必須由⊙O1的位置旋轉(zhuǎn)到⊙O2的位置,⊙O繞點B旋轉(zhuǎn)的角∠O1BO2=n°,⊙O在點B處自轉(zhuǎn)周。
實踐應(yīng)用:(1)在閱讀理解的(1)中,若AB=2c,則⊙O自轉(zhuǎn)____周;若AB=l,則⊙O自轉(zhuǎn)___周,在閱讀理解的(2)中,若∠ABC=120°, 則⊙O在點B處自轉(zhuǎn)____周;若∠ABC=60°,則⊙O在點B 處自轉(zhuǎn) ____周;
(2)如圖③,∠ABC= 90°,AB= BC=,⊙O從⊙O1的位置出發(fā), 在∠ABC外部沿A-B-C滾動到⊙O4的位置,⊙O自轉(zhuǎn)了____周。
拓展聯(lián)想:(1)如圖④,△ABC的周長為l,⊙O從與AB相切于點D的位置出發(fā),在△ABC外部,按順時針方向沿三角形滾動,又回到與AB 相切于點D的位置,⊙O自轉(zhuǎn)了多少周?請說明理由;
(2)如圖⑤,多邊形的周長為l,⊙O從與某邊相切于點D的位置出發(fā),在多邊形外部,按順時針方向沿多邊形滾動,又回到與該邊 相切于點D的位置,直接寫出⊙O自轉(zhuǎn)的周數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:河北省中考真題 題型:探究題

如圖-1至圖-5,⊙O均作無滑動滾動,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O與線段AB或BC相切于端點時刻的位置,⊙O的周長為c.
閱讀理解:
(1)如圖-1,⊙O從⊙O1的位置出發(fā),沿AB滾動到 ⊙O2的位置,當(dāng)AB = c時,⊙O恰好自轉(zhuǎn)1周.
(2)如圖-2,∠ABC相鄰的補角是n°,⊙O在∠ABC外部沿A-B-C滾動,在點B處,必須由 ⊙O1的位置旋轉(zhuǎn)到⊙O2的位置,⊙O繞點B旋轉(zhuǎn)的角∠O1BO2 = n°,⊙O在點B處自轉(zhuǎn)周.
實踐應(yīng)用:
(1)在閱讀理解的(1)中,若AB = 2c,則⊙O自轉(zhuǎn)_____ 周;若AB = l,則⊙O自轉(zhuǎn)_____ 周.在閱讀理解的(2)中,若∠ABC = 120°,則⊙O 在點B處自轉(zhuǎn)_____ 周;若∠ABC = 60°,則⊙O 在點B處自轉(zhuǎn)_____ 周.
(2)如圖-3,∠ABC=90°,AB=BC=c.⊙O從 ⊙O1的位置出發(fā),在∠ABC外部沿A-B-C滾動到⊙O4的位置,⊙O自轉(zhuǎn)_____ 周.
 拓展聯(lián)想:
(3)如圖-4,△ABC的周長為l,⊙O從與AB相切于點D的位置出發(fā),在△ABC外部,按順時針方向沿三角形滾動,又回到與AB相切于點D的位置,⊙O自轉(zhuǎn)了多少周?請說明理由.
(4)如圖-5,多邊形的周長為l,⊙O從與某邊相切于點D的位置出發(fā),在多邊形外部,按順時針方向沿多邊形滾動,又回到與該邊相切于點D的位置,直接寫出⊙O自轉(zhuǎn)的周數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第3章《圓》中考題集(79):3.4 弧長和扇形的面積,圓錐的側(cè)面展開圖(解析版) 題型:解答題

如圖1至圖5,⊙O均作無滑動滾動,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O與線段AB或BC相切于端點時刻的位置,⊙O的周長為c.
閱讀理解:
(1)如圖1,⊙O從⊙O1的位置出發(fā),沿AB滾動到⊙O2的位置,當(dāng)AB=c時,⊙O恰好自轉(zhuǎn)1周;
(2)如圖2,∠ABC相鄰的補角是n°,⊙O在∠ABC外部沿A-B-C滾動,在點B處,必須由⊙O1的位置旋轉(zhuǎn)到⊙O2的位置,⊙O繞點B旋轉(zhuǎn)的角∠O1BO2=n°,⊙O在點B處自轉(zhuǎn)周.
實踐應(yīng)用:
(1)在閱讀理解的(1)中,若AB=2c,則⊙O自轉(zhuǎn)______周;若AB=l,則⊙O自轉(zhuǎn)______周.在閱讀理解的(2)中,若∠ABC=120°,則⊙O在點B處自轉(zhuǎn)______周;若∠ABC=60°,則⊙O在點B處自轉(zhuǎn)______周;
(2)如圖3,∠ABC=90°,AB=BC=c.⊙O從⊙O1的位置出發(fā),在∠ABC外部沿A-B-C滾動到⊙O4的位置,⊙O自轉(zhuǎn)______周.
拓展聯(lián)想:
(1)如圖4,△ABC的周長為l,⊙O從與AB相切于點D的位置出發(fā),在△ABC外部,按順時針方向沿三角形滾動,又回到與AB相切于點D的位置,⊙O自轉(zhuǎn)了多少周?請說明理由;
(2)如圖5,多邊形的周長為l,⊙O從與某邊相切于點D的位置出發(fā),在多邊形外部,按順時針方向沿多邊形滾動,又回到與該邊相切于點D的位置,直接寫出⊙O自轉(zhuǎn)的周數(shù).

查看答案和解析>>

同步練習(xí)冊答案