【題目】拋物線經(jīng)過點,且對稱軸為直線,其部分圖象如圖所示. 對于此拋物線有如下四個結(jié)論:

;②

③若,則時的函數(shù)值小于時的函數(shù)值;

④點不在此拋物線上. 其中正確結(jié)論的序號是(

A.①②B.②③C.②④D.③④

【答案】B

【解析】

利由拋物線的位置可對①進(jìn)行判斷;利用拋物線的對稱性得到拋物線與x軸的一個交點坐標(biāo)為(4,0),代入解析式則可對②進(jìn)行判斷;由拋物線的對稱性和二次函數(shù)的增減性可對③進(jìn)行判斷;拋物線的對稱性得出點(-20)的對稱點是(4,0),由c=-8a 即可得出- =4,則可對④進(jìn)行判斷.

∵拋物線開口向下,
a0,
∵拋物線交y軸的正半軸,
c0,
ac0,

故①錯誤;
∵拋物線的對稱軸為直線x=1,
而點(-2,0)關(guān)于直線x=1的對稱點的坐標(biāo)為(4,0),
16a+4b+c=0,

故②正確;
∵拋物線開口向下,對稱軸為直線x=1,
∴當(dāng)x1時,yx的增大而減小,
∵若mn0,
1+m1+n,
x=1+m時的函數(shù)值小于x=1+n時的函數(shù)值,
∵橫坐標(biāo)是1-n的點的對稱點的橫坐標(biāo)為1+n,

x=1+n時的函數(shù)值等于x=1-n時的函數(shù)值,

x=1+m時的函數(shù)值小于x=1-n時的函數(shù)值,

故③正確;

∵拋物線的對稱軸為- =1,
b=-2a
∴拋物線為y=ax2-2ax+c,
∵拋物線y=ax2+bx+c經(jīng)過點(-2,0),
4a+4a+c=0,即8a+c=0,
c=-8a,
- =4,
∵點(-2,0)的對稱點是(40),
∴點(- ,0)一定在此拋物線上,

故④錯誤.
故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從三角形(不是等腰三角形)一個頂點引出一條射線于對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原三角形相似,我們把這條線段叫做這個三角形的完美分割線.

1)如圖1,在ABC中,CD為角平分線,∠A=40°,B=60°,求證:CDABC的完美分割線.

2)在ABC中,∠A=48°,CDABC的完美分割線,且ACD為等腰三角形,求∠ACB的度數(shù).

3)如圖2,ABC中,AC=2,BC=CDABC的完美分割線,且ACD是以CD為底邊的等腰三角形,求完美分割線CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象過點中點.

1)求此二次函數(shù)的解析式.

2)已知,點在拋物線上,點軸上,當(dāng)四點構(gòu)成以為邊的平行四邊形,求此時點的坐標(biāo).

3)將拋物線在軸下方的部分沿軸向上翻折,得曲線關(guān)于軸的對稱點),在原拋物線軸的上方部分取一點,連接,與翻折后的曲線交于點. 的面積是面積的3倍,這樣的點是否存在?若存在,求出點的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,BC與⊙O相交于點D,點E在⊙O上,且DE=DA,AEBC交于點F.

(1)求證:FD=CD;

(2)若AE=8,tanE=,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,矩形的頂點,的坐標(biāo)分別為(20),(0,3 ,拋物線經(jīng)過,兩點.拋物線的頂點為.

1)求拋物線的表達(dá)式和點的坐標(biāo);

2)點是拋物線對稱軸上一動點,當(dāng)為等腰三角形時,求所有符合條件的點的坐標(biāo);

3)如圖2,現(xiàn)將拋物線進(jìn)行平移,保持頂點在直線上,若平移后的拋物線與射線只有一個公共點.設(shè)平移后拋物線的頂點橫坐標(biāo)為,求的值或取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB和拋物線的交點是A(0,-3),B(5,9),已知拋物線的頂點D的橫坐標(biāo)是2.

(1)求拋物線的解析式及頂點坐標(biāo);

(2)軸上是否存在一點C,與A,B組成等腰三角形?若存在,求出點C的坐標(biāo),若不存在,請說明理由;

(3)在直線AB的下方拋物線上找一點P,連接PA,PB使得△PAB的面積最大,并求出這個最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yax2+bx+ca≠0)圖象如圖,下列結(jié)論:①abc0;②2a+b0;③a-b+c0;④當(dāng)x≠1時,a+bax2+bx:⑤4acb2.其中正確的有____________(只填序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與x軸交于A、B兩點,B點的坐標(biāo)為(3,0),與y軸交于點C(0,-3),點P是直線BC下方拋物線上的一個動點.

(1)求二次函數(shù)解析式;

(2)連接PO,PC,并將POC沿y軸對折,得到四邊形.是否存在點P,使四邊形為菱形?若存在,求出此時點P的坐標(biāo);若不存在,請說明理由;

(3)當(dāng)點P運動到什么位置時,四邊形ABPC的面積最大?求出此時P點的坐標(biāo)和四邊形ABPC的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果三角形的兩個內(nèi)角αβ滿足2α+β=90°,那么我們稱這樣的三角形為準(zhǔn)互余三角形”.

(1)若ABC準(zhǔn)互余三角形”,C>90°,A=60°,則∠B=   °;

(2)如圖①,在RtABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分線,不難證明ABD準(zhǔn)互余三角形.試問在邊BC上是否存在點E(異于點D),使得ABE也是準(zhǔn)互余三角形?若存在,請求出BE的長;若不存在,請說明理由.

(3)如圖②,在四邊形ABCD中,AB=7,CD=12,BDCD,ABD=2BCD,且ABC準(zhǔn)互余三角形,求對角線AC的長.

查看答案和解析>>

同步練習(xí)冊答案