【題目】七年級(jí)某班為準(zhǔn)備科技節(jié)表彰的獎(jiǎng)品,計(jì)劃從友誼超市購(gòu)買(mǎi)筆記本和水筆共40件,在獲知某網(wǎng)店有五一促銷(xiāo)活動(dòng)后,決定從該網(wǎng)店購(gòu)買(mǎi)這些獎(jiǎng)品.已知筆記本和水筆在這兩家商店的零售價(jià)分別如下表,且在友誼超市購(gòu)買(mǎi)這些獎(jiǎng)品需花費(fèi)90元.

品名商店

筆記本(元/件)

水筆(元/件)

友誼超市

2.4

2

網(wǎng)店

2

1.8

1)請(qǐng)求出需購(gòu)買(mǎi)筆記本和水筆的數(shù)量;

2)求從網(wǎng)店購(gòu)買(mǎi)這些獎(jiǎng)品可節(jié)省多少元.

【答案】1)筆記本25件,水筆15件;(213

【解析】

1)設(shè)需購(gòu)買(mǎi)筆記本x件,水筆y件,根據(jù)從友誼超市購(gòu)買(mǎi)筆記本和水筆共40件需花費(fèi)90元,即可得出關(guān)于x,y的二元一次方程組,解之即可得出結(jié)論;

2)根據(jù)總價(jià)=單價(jià)×數(shù)量求出在網(wǎng)店購(gòu)買(mǎi)這些獎(jiǎng)品所需費(fèi)用,用90減去該值即可得出結(jié)論.

:(1)設(shè)需購(gòu)買(mǎi)筆記本x件,水筆y件,
根據(jù)題意得:


解得:


答:需購(gòu)買(mǎi)筆記本25件,水筆15件.
2)在網(wǎng)店購(gòu)買(mǎi)這些獎(jiǎng)品所需費(fèi)用為25×2+15×1.8=77(元),
節(jié)省的錢(qián)數(shù)為90-77=13(元).
答:從網(wǎng)店購(gòu)買(mǎi)這些獎(jiǎng)品可節(jié)省13元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】日零時(shí)起,高鐵開(kāi)通,某旅行社為吸引廣大市民組團(tuán)去仙都旅游,推出了如下收費(fèi)標(biāo)準(zhǔn):如果人數(shù)不超過(guò)人,人均旅游費(fèi)用為元,如果人數(shù)超過(guò)人,每增加人,人均旅游費(fèi)用降低元,但人均旅游費(fèi)用不得低于元.

如果某單位組織人參加仙都旅游,那么需支付旅行社旅游費(fèi)用________元;

現(xiàn)某單位組織員工去仙都旅游,共支付給該旅行社旅游費(fèi)用元,那么該單位有多少名員工參加旅游?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,,是一條射線(xiàn),,一只螞蟻由速度向爬行,同時(shí)另一只螞蟻由點(diǎn)以的速度沿方向爬行,幾秒鐘后,兩只螞蟻與點(diǎn)組成的三角形面積為?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一張長(zhǎng)12cm、寬5cm的矩形紙片內(nèi),要折出一個(gè)菱形小華同學(xué)按照取兩組對(duì)邊中點(diǎn)的方法折出菱形EFGH見(jiàn)方案一),小麗同學(xué)沿矩形的對(duì)角線(xiàn)AC折出CAE=CAD,ACF=ACB的方法得到菱形AECF見(jiàn)方案二).

1你能說(shuō)出小華、小麗所折出的菱形的理由嗎?

2請(qǐng)你通過(guò)計(jì)算比較小華和小麗同學(xué)的折法中,哪種菱形面積較大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等邊三角形ABC中,點(diǎn)DBC的中點(diǎn),點(diǎn)EF分別是邊AB、AC(含線(xiàn)段AB、AC的端點(diǎn))上的動(dòng)點(diǎn),且∠EDF120°,小明和小慧對(duì)這個(gè)圖形展開(kāi)如下研究:

問(wèn)題初探:(1)如圖1,小明發(fā)現(xiàn):當(dāng)∠DEB90°時(shí),BE+CFnAB,則n的值為   

問(wèn)題再探:(2)如圖2,在點(diǎn)E、F的運(yùn)動(dòng)過(guò)程中,小慧發(fā)現(xiàn)兩個(gè)有趣的結(jié)論:

DE始終等于DF;②BECF的和始終不變;請(qǐng)你選擇其中一個(gè)結(jié)論加以證明.

成果運(yùn)用:3)若邊長(zhǎng)AB8,在點(diǎn)E、F的運(yùn)動(dòng)過(guò)程中,記四邊形DEAF的周長(zhǎng)為L,LDE+EA+AF+FD,則周長(zhǎng)L 取最大值和最小值時(shí)E點(diǎn)的位置?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥ABE.

(1)若∠BAC=50°,求∠EDA的度數(shù);

(2)求證:直線(xiàn)AD是線(xiàn)段CE的垂直平分線(xiàn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC長(zhǎng)為4,面積是16,腰AC的垂直平分線(xiàn)EF分別交AC,AB邊于E,F點(diǎn),若點(diǎn)DBC邊的中點(diǎn),點(diǎn)M為線(xiàn)段EF上一動(dòng)點(diǎn),則周長(zhǎng)的最小值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)一般地,數(shù)軸上表示數(shù)m和數(shù)n的兩點(diǎn)之間的距離等于.如果表示數(shù)a的兩點(diǎn)之間的距離是5,那么__________

2)若數(shù)軸上表示數(shù)a的點(diǎn)位于6之間,求的值;

3)當(dāng)a取何值時(shí),的值最小,最小值是多少?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,ADBCEAB的中點(diǎn),連接DE并延長(zhǎng)交CB的延長(zhǎng)線(xiàn)于點(diǎn)F,點(diǎn)MBC邊上,且∠MDF=∠ADF。

1)求證:△ADE≌△BFE

2)如果FM=CM,求證:EM垂直平分DF

查看答案和解析>>

同步練習(xí)冊(cè)答案