如圖,將一塊含30°角的學(xué)生用三角板放在平面直角坐標(biāo)系中,使頂點(diǎn)A、B分別放置在y軸、x軸上,已知AB=2,∠ABO=∠ACB=30°.
(1)求點(diǎn)A、B、C的坐標(biāo);
(2)求過A,B,C三點(diǎn)的拋物線解析式;
(3)在(2)中的拋物線上是否存在點(diǎn)P,使△PAB的面積等于△ABC的面積?若不存在,請說明理由;若存在,請你求出點(diǎn)P的坐標(biāo).
(1)在Rt△AOB中,∠ABO=30°,AB=2,
則OA=1,OB=
3

∴點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)B的坐標(biāo)為(
3
,0),
在Rt△ABC中,AB=2,∠ACB=30°,
則BC=ABcot∠ACB=2
3
,
過點(diǎn)C作CD⊥x軸于點(diǎn)D,如圖所示:

在Rt△BCD中,∠CBD=60°,BC=2
3

則BD=BCsin∠BCD=
3
,CD=
3
BD=3,
故點(diǎn)C的坐標(biāo)為(2
3
,3).
綜上可得點(diǎn)A(0,1),點(diǎn)B(
3
,0),點(diǎn)C(2
3
,3).

(2)設(shè)y=ax2+bx+1,
將B(
3
,0),C(2
3
,3)代入可得:
3a+
3
b+1=0
12a+2
3
b+1=3
,
解得:
a=
2
3
b=-
3
,
故拋物線解析式為:y=
2
3
x2-
3
x+1.
(3)①當(dāng)點(diǎn)P與點(diǎn)C重合時(shí),很明顯△PAB的面積等于△ABC,此時(shí)點(diǎn)P的坐標(biāo)為(2
3
,3).

②點(diǎn)P與點(diǎn)C不重合時(shí),設(shè)直線AB解析式為y=kx+1,
將B(
3
,0)代入可得:
3
k+1=0,
解得:k=-
3
3

∴y=-
3
3
x+1,
過點(diǎn)C作直線AB的平行線,則與拋物線交點(diǎn)為點(diǎn)P的位置,

設(shè)直線CP的解析式為y=-
3
3
x+m,
將C(2
3
,3)代入可得:3=-
3
3
×2
3
+m,
解得:m=5,
∴直線CP的解析式為y=-
3
3
x+5,
聯(lián)立拋物線與直線CP的解析式:
y=-
3
3
x+5
y=
2
3
x2-
3
x+1
,
解得:
x1=2
3
y1=3
,
x2=-
3
y2=6
,
故此時(shí)點(diǎn)P的坐標(biāo)為(-
3
,6).
綜上可得點(diǎn)P的坐標(biāo)為(2
3
,3)或(-
3
,6).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知拋物線y=-x2+bx+c與x軸交于點(diǎn)A(-1,0)、B(3,0),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為E.
(1)求拋物線解析式及頂點(diǎn)E的坐標(biāo);
(2)如圖,過點(diǎn)E作BC平行線,交x軸于點(diǎn)F,在不添加線和字母情況下,圖中面積相等的三角形有:______;
(3)將拋物線向下平移,與x軸交于點(diǎn)M、N,與y軸的正半軸交于點(diǎn)P,頂點(diǎn)為Q.在四邊形MNQP中滿足S△NPQ=S△MNP,求此時(shí)直線PN的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知等腰三角形ABC的兩個(gè)頂點(diǎn)分別是A(0,1)、B(0,3),第三個(gè)頂點(diǎn)C在x軸的正半軸上.關(guān)于y軸對稱的拋物線y=ax2+bx+c經(jīng)過A、D(3,-2)、P三點(diǎn),且點(diǎn)P關(guān)于直線AC的對稱點(diǎn)在x軸上.
(1)求直線BC的解析式;
(2)求拋物線y=ax2+bx+c的解析式及點(diǎn)P的坐標(biāo);
(3)設(shè)M是y軸上的一個(gè)動點(diǎn),求PM+CM的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,兩條拋物線y1=-
1
2
x2+1,y2=-
1
2
x2-1
與分別經(jīng)過點(diǎn)(-2,0),(2,0)且平行于y軸的兩條平行線圍成的陰影部分的面積為( 。
A.8B.6C.10D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知以E(3,0)為圓心,以5為半徑的⊙E與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),拋物線y=ax2+bx+c經(jīng)過A,B,C三點(diǎn),頂點(diǎn)為F.
(1)求A,B,C三點(diǎn)的坐標(biāo);
(2)求拋物線的解析式及頂點(diǎn)F的坐標(biāo);
(3)已知M為拋物線上一動點(diǎn)(不與C點(diǎn)重合),試探究:
①使得以A,B,M為頂點(diǎn)的三角形面積與△ABC的面積相等,求所有符合條件的點(diǎn)M的坐標(biāo);
②若探究①中的M點(diǎn)位于第四象限,連接M點(diǎn)與拋物線頂點(diǎn)F,試判斷直線MF與⊙E的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:拋物線y=ax2+bx+c(a≠0)的對稱軸為x=-1,與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,其中A(-3,0),C(0,-2)
(1)求這條拋物線的函數(shù)表達(dá)式;
(2)已知在對稱軸上存在一點(diǎn)P,使得△PBC的周長最小.請求出點(diǎn)P的坐標(biāo);
(3)若點(diǎn)D是線段OC上的一個(gè)動點(diǎn)(不與點(diǎn)O、點(diǎn)C重合).過點(diǎn)D作DEPC交x軸于點(diǎn)E.連接PD、PE.設(shè)CD的長為m,△PDE的面積為S.求S與m之間的函數(shù)關(guān)系式.試說明S是否存在最大值?若存在,請求出最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)平面中,O為坐標(biāo)原點(diǎn),二次函數(shù)y=x2+bx+c的圖象與y軸的負(fù)半軸相交于點(diǎn)C(如圖),點(diǎn)C的坐標(biāo)為(0,-3),且BO=CO.
(1)求出B點(diǎn)坐標(biāo)和這個(gè)二次函數(shù)的解析式;
(2)求△ABC的面積;
(3)若P是拋物線對稱軸上一個(gè)動點(diǎn),求當(dāng)PA+PC的值最小時(shí)P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

用12m長的柵欄圍成一個(gè)中間被隔斷的鴨舍(柵欄占地面積忽略不計(jì)).

(1)如圖1,當(dāng)AB=______m,BC=______m時(shí),所圍成兩間鴨舍的面積最大,最大值為______m2
(2)如圖2,若現(xiàn)有一面長4m的墻可以利用,其余三方及隔斷使用柵欄,所圍成兩間鴨舍面積和的最大值是多少______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某商店購買一批單價(jià)為20元的日用品,如果以單價(jià)30元銷售,那么半月內(nèi)可以售出400件.據(jù)銷售經(jīng)驗(yàn),提高銷售單價(jià)會導(dǎo)致銷售量的減少,即銷售單價(jià)每提高一元,銷售量相應(yīng)減少20件.如何提高銷售價(jià),才能在半月內(nèi)獲得最大利潤?

查看答案和解析>>

同步練習(xí)冊答案