二次函數(shù)y=ax2+c(a≠0)的圖象經(jīng)過點A(1,-1),B(2,5),
(1)求函數(shù)y=ax2+c的表達(dá)式.
(2)若點C(-2,m),D(n,7)也在函數(shù)的圖象上,求點C的坐標(biāo);點D的坐標(biāo).
(1)將A(1,-1),B(2,5)代入y=ax2+c得:
a+c=-1
4a+c=5
,
解得:
a=2
c=-3
,
則二次函數(shù)解析式為y=2x2-3;

(2)將x=-2,y=m代入二次函數(shù)解析式得:y=m=5,即C(5,-2);
將x=n,y=7代入二次函數(shù)解析式得:7=2n2-3,即n=±
5
,即D(
5
,7)或(-
5
,7).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=ax2-
1
3
x+2
與x軸交于點A和點B,與y軸交于點C,已知點B的坐標(biāo)為(3,0).
(1)求a的值和拋物線的頂點坐標(biāo);
(2)分別連接AC、BC.在x軸下方的拋物線上求一點M,使△AMC與△ABC的面積相等;
(3)設(shè)N是拋物線對稱軸上的一個動點,d=|AN-CN|.探究:是否存在一點N,使d的值最大?若存在,請直接寫出點N的坐標(biāo)和d的最大值;若不存在,請簡單說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,二次函數(shù)y=-
1
2
x2+mx+n的圖象與y軸交于點N,其頂點M在直線y=-
3
2
x上運動,O為坐標(biāo)原點.

(1)當(dāng)m=-2時,求點N的坐標(biāo);
(2)當(dāng)△MON為直角三角形時,求m、n的值;
(3)已知△ABC的三個頂點的坐標(biāo)分別為A(-4,2),B(-4,-3),C(-2,2),當(dāng)拋物線y=-
1
2
x2+mx+n在對稱軸左側(cè)的部分與△ABC的三邊有公共點時,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:拋物線y=(k-1)x2+2kx+k-2與x軸有兩個不同的交點.
(1)求k的取值范圍;
(2)當(dāng)k為整數(shù),且關(guān)于x的方程3x=kx-1的解是負(fù)數(shù)時,求拋物線的解析式;
(3)在(2)的條件下,若在拋物線和x軸所圍成的封閉圖形內(nèi)畫出一個最大的正方形,使得正方形的一邊在x軸上,其對邊的兩個端點在拋物線上,試求出這個最大正方形的邊長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知如圖,拋物線y=ax2+bx+c與x軸相交于B(1,0)、C(4,0)兩點,與y軸的正半軸相交于A點,過A、B、C三點的⊙P與y軸相切于點A.
(1)請求出點A坐標(biāo)和⊙P的半徑;
(2)請確定拋物線的解析式;
(3)M為y軸負(fù)半軸上的一個動點,直線MB交⊙P于點D.若△AOB與以A、B、D為頂點的三角形相似,求MB•MD的值.(先畫出符合題意的示意圖再求解).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線y=ax2+bx+c(a≠0)交x軸于A、B兩點,交y軸于點C,已知拋物線的對稱軸為直線x=-1,B(1,0),C(0,-3).
(1)求二次函數(shù)y=ax2+bx+c(a≠0)的解析式;
(2)在拋物線對稱軸上是否存在一點P,使點P到A、C兩點距離之差最大?若存在,求出點P坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖(1),拋物線y=ax2-3ax+b經(jīng)過A(-1,0),C(3,-4)兩點,與y軸交于點D,與x軸交于另一點B.
(1)求此拋物線的解析式;
(2)若直線L:y=kx+1(k≠0)將四邊形ABCD的面積分成相等的兩部分,求直線L的解析式;
(3)如圖(2),過點E(1,1)作EF⊥x軸于點F,將△AEF繞平面內(nèi)某點旋轉(zhuǎn)180°后得△MNT(點M、N、T分別與點A,E,F(xiàn)對應(yīng)),使點M,N在拋物線上,求點M,N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,某地一古城墻門洞呈拋物線形,已知門洞的地面寬度AB=12米,兩側(cè)距地面5米高C、D處各有一盞路燈,兩燈間的水平距離CD=8米,求這個門洞的高度.(提示:選擇適當(dāng)?shù)奈恢脼樵c建立直角坐標(biāo)系,例如圖:以AB的中點為坐標(biāo)原點建立直角坐標(biāo)系.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=-x2-3x+4和拋物線y=x2-3x-4相交于A,B兩點.點P在拋物線C1上,且位于點A和點B之間;點Q在拋物線C2上,也位于點A和點B之間.
(1)求線段AB的長;
(2)當(dāng)PQy軸時,求PQ長度的最大值.

查看答案和解析>>

同步練習(xí)冊答案