【題目】如圖,正方形ABCD中,點E是AD邊的中點,BD,CE交于點H,BE、AH交于點G,則下列結論:①∠ABE=∠DCE;②AG⊥BE;③S△BHE=S△CHD;④∠AHB=∠EHD.其中正確的是( 。
A.①③B.①②③④C.①②③D.①③④
【答案】B
【解析】
根據正方形的性質證得△BAE≌△CDE,推出∠ABE=∠DCE,可知①正確;利用正方形性質證△ADH≌△CDH,求得∠HAD=∠HCD,推出∠ABE=∠HAD;求出∠ABE+∠BAG=90°;最后在△AGE中根據三角形的內角和是180°求得∠AGE=90°即可得到②正確.根據AD∥BC,求出S△BDE=S△CDE,推出S△BDES△DEH=S△CDES△DEH,即:S△BHE=S△CHD,故③正確;由∠AHD=∠CHD,得到鄰補角和對頂角相等得到∠AHB=∠EHD,故④正確;
解:∵四邊形ABCD是正方形,E是AD邊上的中點,
∴AE=DE,AB=CD,∠BAD=∠CDA=90°,
∴△BAE≌△CDE(SAS),
∴∠ABE=∠DCE,
故①正確;
∵四邊形ABCD是正方形,
∴AD=DC,∠ADB=∠CDB=45°,DH=DH,
∴△ADH≌△CDH(SAS),
∴∠HAD=∠HCD,
∵∠ABE=∠DCE
∴∠ABE=∠HAD,
∵∠BAD=∠BAH+∠DAH=90°,
∴∠ABE+∠BAH=90°,
∴∠AGB=180°90°=90°,
∴AG⊥BE,
故②正確;
∵AD∥BC,
∴S△BDE=S△CDE,
∴S△BDES△DEH=S△CDES△DEH,
即:S△BHE=S△CHD,
故③正確;
∵△ADH≌△CDH,
∴∠AHD=∠CHD,
∴∠AHB=∠CHB,
∵∠BHC=∠DHE,
∴∠AHB=∠EHD,
故④正確;
故選:B.
科目:初中數學 來源: 題型:
【題目】如圖,拋物線(m為常數)交y軸于點A,與x軸的一個交點在2和3之間,頂點為B.①拋物線與直線有且只有一個交點;②若點、點、點在該函數圖象上,則;③將該拋物線向左平移2個單位,再向下平移2個單位,所得拋物線解析式為;④點A關于直線的對稱點為C,點D、E分別在x軸和y軸上,當時,四邊形BCDE周長的最小值為.其中正確判斷的序號是__
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(綜合與實踐)如圖①,在正方形ABCD中,點E、F分別在射線CD、BC上,且BF=CE,將線段FA繞點F順時針旋轉90°得到線段FG,連接EG,試探究線段EG和BF的數量關系和位置關系.
(觀察與猜想)任務一:“智慧小組”首先考慮點E、F的特殊位置如圖②,當點E與點D重合,點F與點C重合時,易知:EG與BF的數量關系是 ,EG與BF的位置關系是 .
(探究與證明)任務二:“博學小組”同學認為E、F不一定必須在特殊位置,他們分兩種情況,一種是點E、F分別在CD、BC邊上任意位置時(如圖③);一種是點E、F在CD、BC邊的延長線上的任意位置時(如圖④),線段EG與BF的數量關系與位置關系仍然成立.請你選擇其中一種情況給出證明.
(拓展與延伸)“創(chuàng)新小組”同學認為,若將“正方形ABCD”改為“矩形ABCD,且=k(k≠1)”,點E、F分別在射線CD、BC上任意位置時,仍將線段FA繞點F順時針旋轉90°,并適當延長得到線段FG,連接EG(如圖⑤),則當線段BF、CE、AF、FG滿足一個條件 時,線段EG與BF的數量關系與位置關系仍然成立.(請你在橫線上直接寫出這個條件,無需證明)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對任意一個四位數n,如果千位與十位上的數字之和為9,百位與個位上的數字之和也為9,則稱n為“極數”。
(1)請任意寫出三個“極數”;并猜想任意一個“極數”是否是99的倍數,請說明理由;
(2)如果一個正整數a是另一個正整數b的平方,則稱正整數a是完全平方數。若四位數m為“極數”,記D(m)=,求滿足D(m)是完全平方數的所有m.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】解方程
(1)x2+1=3x
(2)(x﹣2)(x﹣3)=12
(3)(2x﹣3)2+x(2x﹣3)=0(因式分解法)
(4)2x2﹣4x﹣1=0(用配方法).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】施秉縣城關鎮(zhèn)為打造“綠色小鎮(zhèn)”,投入資金進行河道治污.已知2017年投入資金1000萬元,2019年投入資金1210萬元.
(1)求該鎮(zhèn)投入資金從2017年至2019年的年平均增長率;
(2)若2020年投入資金保持前兩年的年平均增長率不變,求該鎮(zhèn)2020年預計投入資金多少萬元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若實數a,b滿足a+b=1時,就稱點P(a,b)為“平衡點”.
(1)判斷點A(3,﹣4)、B(-1,2-)是不是平衡點;
(2)已知拋物線y=x2+(p﹣t﹣1)x+q+t﹣3(t>3)上有且只有一個“平衡點”,且當﹣2≤p≤3時,q的最小值為t,求t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在某一時刻測得1米長的竹竿豎直放置時影長1.2米,在同一時刻旗桿AB的影長不全落在水平地面上,有一部分落在樓房的墻上,他測得落在地面上影長為BD=9.6米,留在墻上的影長CD=2米,則旗桿的高度( 。
A.9米B.9.6米C.10米D.10.2米
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com