已知:E是正方形ABCD內(nèi)一點(diǎn),且∠ECD=∠EDC=15°,求證:△ABE是等邊三角形,小萍同學(xué)靈活運(yùn)用全等變換,將△ECD進(jìn)行旋轉(zhuǎn)與翻折,使△ECD≌△FAD,巧妙地解答了此題.請(qǐng)按照小萍的思路,探究并解答下列問題:
(1)證明:△DEF是等邊三角形;
(2)證明:△ECD≌△FAE;
(3)證明:△ABE是等邊三角形.

證明:(1)∵∠ECD=∠EDC=15°,將△ECD進(jìn)行旋轉(zhuǎn)與翻折,使△ECD≌△FAD,
∴∠FDA=15°,DE=DF,
∴∠FDE=90°-∠FDA-∠EDC=60°,
∴△DEF是等邊三角形(有一個(gè)角是60°的等腰三角形是等邊三角形);

(2)∵△DEF是等邊三角形,
∴DF=EF=DE,∠DFE=∠DEF=60°,
∵DE=EC,DF=AF,
∴AF=EF,
∵∠ECD=∠EDC=15°,
∴∠DEC=150°,
∴∠DFA=150°,
∴∠AFE=360°-150°-60°=150°,
,
∴△ECD≌△FAE(SAS);

(3)∵△ECD≌△FAE,△ECD≌△FAD,
∴DC=AE,∠FAE=∠EDC=∠DAF=15°,
∴∠DAE=30°,
∴∠EAB=60°,
∴△ABE是等邊三角形.
分析:(1)利用全等三角形的性質(zhì)得出DE=DF,∠FDE=90°-∠FDA-∠EDC=60°,即可得出答案;
(2)利用(1)中結(jié)論得出∠AFE=360°-150°-60°=150°,進(jìn)而得出DE=EF,AF=EC,即可得出答案;
(3)利用以上結(jié)論得出∠DAE=30°,進(jìn)而得出AE=AB,即可得出答案.
點(diǎn)評(píng):本題考查了圖形的翻折變換以及全等三角的判定和等邊三角形的判定等知識(shí),熟練利用全等三角形形的性質(zhì)得出對(duì)應(yīng)邊與對(duì)應(yīng)角之間的關(guān)系是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知點(diǎn)P是線段AB的黃金分割點(diǎn),且PA>PB,若S1表示以PA為邊的正方形的面積,S2表示長(zhǎng)為AB、寬為PB的矩形的面積,那么S1( 。㏒2
A、>B、=C、<D、無(wú)法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,直y=
3
2
x+b
與雙曲線y=
16
x
相交于第一象限內(nèi)的點(diǎn)A,AB、AC分別垂直于x軸、y軸,垂足分別為B、C,已知四邊形ABCD是正方形,求直線所對(duì)應(yīng)的一次函數(shù)的解析式以及它與x軸的交點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•廈門質(zhì)檢)如圖,已知四邊形ABCD是正方形,以AB為直徑在正方形內(nèi)作半圓,P是半圓上的動(dòng)點(diǎn)(不與點(diǎn)A、B重合),連接PA、PD.
(1)若∠PAB=37°,正方形的邊長(zhǎng)為5,求PA的長(zhǎng)度;
(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
(2)若PA=PD,過點(diǎn)P作PE⊥AD,垂足為E,判斷直線PE與半圓的位置關(guān)系并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•太原一模)如圖1,已知四邊形ABCD是正方形,對(duì)角線AC、BD相交于點(diǎn)E,以點(diǎn)E為頂點(diǎn)作正方形EFGH,使點(diǎn)A、D分別在EH和EF上,連接BH、AF.
(1)判斷并說明BH和AF的數(shù)量關(guān)系;
(2)將正方形EFGH繞點(diǎn)E順時(shí)針方向旋轉(zhuǎn)θ(0°≤θ≤360°),設(shè)AB=a,EH=b,且a<2b.
①如圖2,連接AG,設(shè)AG=x,請(qǐng)直接寫出x的取值范圍;當(dāng)x取最大值時(shí),直接寫出θ的值;
②如果四邊形ABDH是平行四邊形,請(qǐng)?jiān)趥溆脠D中補(bǔ)全圖形,并求a與b的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知O點(diǎn)是正方形ABCD的兩條對(duì)角線的交點(diǎn),則AO:AB:AC=
1:
2
:2
1:
2
:2

查看答案和解析>>

同步練習(xí)冊(cè)答案