分析 (1)過點C作CG⊥BF,交BF延長線于點G,易證△CBG≌△CAE,根據(jù)全等三角形的對應邊相等,即可證得AF+BF=2CE;
(2)過點C做CD⊥BF,交FB的于點D,易證△ACE≌△BCD,根據(jù)全等三角形的對應邊相等,即可證得BF-AF=2CE.
解答 解:(1)AF-BF=2CE
圖2中,過點C作CG⊥BF,交BF延長線于點G,
∵AC=BC
可得∠AEC=∠CGB,
∠ACE=∠BCG,
在△CBG和△CAE中,
$\left\{\begin{array}{l}{∠AEC=∠CGB}\\{∠ACE=∠BCG}\\{AC=BC}\end{array}\right.$,
∴△CBG≌△CAE(AAS),
∴AE=BG,
∵AF=AE+EF,
∴AF=BG+CE=BF+FG+CE=2CE+BF,
∴AF-BF=2CE;
(2)BF-AF=2CE;
如圖3,過點C做CD⊥BF,交FB的于點D,
∵AC=BC
可得∠AEC=∠CDB,
∠ACE=∠BCD,
在△CBD和△CAE中,
$\left\{\begin{array}{l}{∠AEC=∠CDB}\\{∠ACE=∠BCD}\\{AC=BC}\end{array}\right.$,
∴△CBD≌△CAE(AAS),
∴AE=BD,
∵AF=AE-EF,
∴AF=BD-CE=BF-FD-CE=BF-2CE,
∴BF-AF=2CE.
故答案為:BF-AF=2CE.
點評 此題考查幾何變換問題,全等三角形的判定和性質(zhì),正確作出垂線,構(gòu)造全等三角形是解決本題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 42×103米 | B. | 0.42×105米 | C. | 4.2×104米 | D. | 4.2×105米 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com