【題目】如圖,在Rt中,,點為邊上一個動點,過點作交邊于,過點作射線交邊于點,交射線于點,聯(lián)結(jié).設兩點的距離為,兩點的距離為.
(1)求證:;
(2)求關于的函數(shù)解析式,并寫出的取值范圍;
(3)點在運動過程中,能否構(gòu)成等腰三角形?如果能,請直接寫出的長,如果不能,請簡要說明理由.
【答案】(1)見解析;(2)y=2x-6(3≤x≤12);(3)能,3或6-6或6
【解析】
(1)根據(jù)三角形的內(nèi)角和定理先得∠B=60°,證明△BED是等邊三角形,根據(jù)等角對等邊分別證明DE=DG,BD=ED,可得結(jié)論;
(2)先得BC=6,根據(jù)直角三角形30度角的性質(zhì)可得結(jié)論;
(3)分三種情況:①當ED=DF時,當F與C重合時,如圖2,BE=BC=3;②當ED=EF時,如圖3,根據(jù)直角三角形30度角的性質(zhì)或三角函數(shù)列等式可得結(jié)論;③當EF=DF時,C與D重合,如圖4,此時BE=BC=6;
(1)證明:如圖1,
Rt△ABC中,∠A=30°,∠C=90°,
∴∠B=60°,
∵∠BDE=∠B=60°,
∴∠BED=60°,
∴△BED是等邊三角形,
∴BD=ED,
∵EF⊥AB,
∴∠BEF=90°,
∴∠DEG=30°,
∵∠EDB=∠DEG+∠DGE,
∴∠DGE=60°-30°=30°=∠DEF,
∴DE=DG,
∴BD=DG;
(2)解:如圖1,Rt△ABC中,∠A=30°,∠C=90°,AB=12,
∴BC=6,
Rt△BEG中,∠G=30°,
∴BG=2BE,
∵BE兩點的距離為x,CG兩點的距離為y,
∴6+y=2x,y=2x-6(3≤x≤12);
(3)解:分三種情況:
①當ED=DF時,當F與C重合時,如圖2,BE=BC=3;
②當ED=EF時,如圖3,
BE=ED=EF=x,
∴AE=12-x,
Rt△AEF中,tan∠A=,
∵∠A=30°,
∴,
∴x=6-6,
∴BE=6-6;
③當EF=DF時,C與D重合,如圖4,此時BE=BC=6;
綜上,當△DEF構(gòu)成等腰三角形時,BE的長為3或6-6或6,
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y=﹣2x+4分別交x軸、y軸于點A、B,拋物線過A,B兩點,點P是線段AB上一動點,過點P作PC⊥x軸于點C,交拋物線于點D.
(1)若拋物線的解析式為y=﹣2x2+2x+4,設其頂點為M,其對稱軸交AB于點N.
①求點M和點N的坐標;
②在拋物線的對稱軸上找一點Q,使|AQ﹣BQ|的值最大,請直接寫出點Q的坐標;
③是否存在點P,使四邊形MNPD為菱形?并說明理由;
(2)當點P的橫坐標為1時,是否存在這樣的拋物線,使得以B、P、D為頂點的三角形與△AOB相似?若存在,求出滿足條件的拋物線的解析式;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,將Rt△AOB繞點O順時針旋轉(zhuǎn)90°后得Rt△FOE,將線段EF繞點E逆時針旋轉(zhuǎn)90°后得線段ED,分別以O,E為圓心,OA、ED長為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分面積是( 。
A. π B. C. 3+π D. 8﹣π
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與軸交于點,與軸交于點,拋物線經(jīng)過、兩點.
①求點的坐標;
②求拋物線的解析式;
③如圖,點是直線上方拋物線上的一動點,當面積最大時,請求出點的坐標和面積的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程x2-(2m+1)x+m2+m=0.
(1)求證:該一元二次方程總有兩個不相等的實數(shù)根;
(2)若該方程的兩根x1、x2是某個等腰三角形的兩邊長,且該三角形的周長為10,試求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】動畫片《小豬佩奇》風靡全球,受到孩子們的喜愛,現(xiàn)有4張(小豬佩奇)角色卡片,分別是A佩奇.B喬治.C佩奇媽媽.D佩奇爸爸(四張卡片除字母和內(nèi)容外,其余完全相同)姐弟兩人做游戲,他們講這四張卡片混在一起,背面朝上放好.
(1)姐姐從中隨機抽取一張,求恰好抽到A佩奇的概率;
(2)若兩人分別隨機抽取一張卡片(不放回),請用列表或畫樹狀圖的方法求出恰好姐姐抽到A佩奇,弟弟抽到B喬治的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點A(1,0),B(1﹣a,0),C(1+a,0)(a>0),點P在以D(4,4)為圓心,1為半徑的圓上運動,且始終滿足∠BPC=90°,則a的最大值是( )
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形ABCD中,有一直徑為CD的半圓,圓心為點O,CD=2,現(xiàn)有兩點E、F,分別從點A、點C同時出發(fā),點E沿線段AD以每秒1個單位長度的速度向點D運動,點F沿線段CB以每秒2個單位長度的速度向點B運動,當點F運動到點B時,點E也隨之停止運動.設點E離開點A的時間為t(s),回答下列問題:
(1)如圖①,根據(jù)下列條件,分別求出t的值.
①EF與半圓相切;
②△EOF是等腰三角形.
(2)如圖②,點P是EF的中點,Q是半圓上一點,請直接寫出PQ+OQ的最小值與最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x -2mx(m為常數(shù)),當-1≤x≤2時,函數(shù)y的最小值為-2,則m的值是( )
A. B. C. 或 D. -或
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com