精英家教網 > 初中數學 > 題目詳情
(2002•海淀區(qū))如圖,在△ABC中,∠C=90°,P為AB上一點,且點P不與點A重合,過點P作PE⊥AB交AC邊于E點,點E不與點C重合,若AB=10,AC=8,設AP的長為x,四邊形PECB的周長為y,求y與x之間的函數關系式.

【答案】分析:四邊形PECB的周長為PE+EC+CB+BP,其中BC在直角△ABC中運用勾股定理可以求出,BP=AB-AP=10-x,另外兩條邊均可根據△AEP∽△ABC,借助于比例線段,用含有x的式子表示出來.關鍵還需求出自變量x的取值范圍,這可以令E點運行到C時,求特殊值.
解答:解:∵在△ABC中,∠C=90°AB=10,AC=8,
∴BC=6.
∵EP⊥AB且∠A為公共角,
∴△AEP∽△ABC,

∵AP=x,
,
即AE=,PE=,


當E與C重合時,CP⊥AB,
∴△APC∽△ACB,
∴CA2=AP•AB,
∴82=10AP,
AP=
因為P與A不重合,E與C不重合,
所以

點評:本題實際還是考查相似三角形的判定以及一次函數在幾何圖形中的應用.
練習冊系列答案
相關習題

科目:初中數學 來源:2002年全國中考數學試題匯編《二次函數》(05)(解析版) 題型:解答題

(2002•海淀區(qū))已知:二次函數y=x2-kx+k+4的圖象與y軸交于點C,且與x軸的正半軸交于A、B兩點(點A在點B左側).若A、B兩點的橫坐標為整數,
(1)確定這個二次函數的解析式并求它的頂點坐標;
(2)若點D的坐標是(0,6),點P(t,0)是線段AB上的一個動點,它可與點A重合,但不與點B重合.設四邊形PBCD的面積為S,求S與t的函數關系式;
(3)若點P與點A重合,得到四邊形ABCD,以四邊形ABCD的一邊為邊,畫一個三角形,使它的面積等于四邊形ABCD的面積,并注明三角形高線的長.再利用“等底等高的三角形面積相等”的知識,畫一個三角形,使它的面積等于四邊形ABCD的面積(畫示意圖,不寫計算和證明過程).

查看答案和解析>>

科目:初中數學 來源:2002年全國中考數學試題匯編《反比例函數》(02)(解析版) 題型:填空題

(2002•海淀區(qū))已知函數y=kx的圖象經過點(2,-6),則函數y=的解析式可確定為   

查看答案和解析>>

科目:初中數學 來源:2002年北京市海淀區(qū)中考數學試卷(解析版) 題型:解答題

(2002•海淀區(qū))已知:二次函數y=x2-kx+k+4的圖象與y軸交于點C,且與x軸的正半軸交于A、B兩點(點A在點B左側).若A、B兩點的橫坐標為整數,
(1)確定這個二次函數的解析式并求它的頂點坐標;
(2)若點D的坐標是(0,6),點P(t,0)是線段AB上的一個動點,它可與點A重合,但不與點B重合.設四邊形PBCD的面積為S,求S與t的函數關系式;
(3)若點P與點A重合,得到四邊形ABCD,以四邊形ABCD的一邊為邊,畫一個三角形,使它的面積等于四邊形ABCD的面積,并注明三角形高線的長.再利用“等底等高的三角形面積相等”的知識,畫一個三角形,使它的面積等于四邊形ABCD的面積(畫示意圖,不寫計算和證明過程).

查看答案和解析>>

科目:初中數學 來源:2002年北京市海淀區(qū)中考數學試卷(解析版) 題型:填空題

(2002•海淀區(qū))已知函數y=kx的圖象經過點(2,-6),則函數y=的解析式可確定為   

查看答案和解析>>

科目:初中數學 來源:2002年全國中考數學試題匯編《銳角三角函數》(04)(解析版) 題型:解答題

(2002•海淀區(qū))如圖,在菱形ABCD中,AE⊥BC于E點,EC=1,sinB=,求四邊形AECD的周長.

查看答案和解析>>

同步練習冊答案