已知拋物線拋物線(n為正整數(shù),且0<a1<a2<…<an)與x軸的交點(diǎn)為An-1(bn-1,0)和An(bn,0),當(dāng)n=1時(shí),第1條拋物線與x軸的交點(diǎn)為A0(0,0)和A1(b1,0),其他依此類推.

(1)求a1,b1的值及拋物線y2的解析式;

(2)拋物線y3的頂點(diǎn)坐標(biāo)為(                );

依此類推第n條拋物線yn的頂點(diǎn)坐標(biāo)為(        ,        );

所有拋物線的頂點(diǎn)坐標(biāo)滿足的函數(shù)關(guān)系是        ;

(3)探究下列結(jié)論:

①若用An-1An表示第n條拋物線被x軸截得得線段長(zhǎng),直接寫出A0A1的值,并求出An-1An

②是否存在經(jīng)過(guò)點(diǎn)A(2,0)的直線和所有拋物線都相交,且被每一條拋物線截得得線段的長(zhǎng)度都相等?若存在,直接寫出直線的表達(dá)式;若不存在,請(qǐng)說(shuō)明理由.

 

【答案】

解:(1)∵與x軸交于點(diǎn)A0(0,0),∴―a12+ a1=0,∴a1=0或1。

由已知可知a1>0,∴a1=1。

。

令y1=0代入得:=0,∴x1=0,x2=2。

∴y1與x軸交于A0(0,0),A1(2,0)!郻1=2。

又∵拋物線與x軸交于點(diǎn)A1(2,0),

∴―(2―a2)2+ a2=0,∴a2=1或4,∵a2> a1,∴a2=1(舍去)。

∴取a2=4,拋物線

(2)(9,9); (n2,n2);y=x。

(3)①∵A0(0,0),A1(2,0),∴A0 A1=2。

又∵,

令yn=0,得,解得:x1=n2+n,x2=n2-n。

∴A n1(n2-n,0),A n(n2+n,0),即A n1 A n=( n2+n)-( n2-n)=2 n。

②存在。是平行于直線y=x且過(guò)A1(2,0)的直線,其表達(dá)式為y=x-2。

【解析】

試題分析:(1)將A0坐標(biāo)代入y1的解析式可求得a1的值;a1的值知道了y1的解析式也就確定了,已知拋物線就可求出b1的值,又把(b1,0)代入y2,可求出a2 ,即得y2的解析式。

(2)用同樣的方法可求得a3 、a4 、a5 ……由此得到規(guī)律

∵拋物線令y2=0代入得:,∴x1=2,x2=6。

∴y2與x軸交于點(diǎn)A1(2,0),A2(6,0)。

又∵拋物線與x軸交于A2(6,0),∴―(6―a3)2+a3=0!郺3=4或9。

∵a3> a3,∴a3=4(舍去),即a3=9!鄴佄锞y3的頂點(diǎn)坐標(biāo)為(9,9)。

由拋物線y1的頂點(diǎn)坐標(biāo)為(1,1),y2的頂點(diǎn)坐標(biāo)為(4,4),y3的頂點(diǎn)坐標(biāo)為(9,9),依次類推拋物線yn的頂點(diǎn)坐標(biāo)為(n2,n2)。

∵所有拋物線的頂點(diǎn)的橫坐標(biāo)等于縱坐標(biāo),

∴頂點(diǎn)坐標(biāo)滿足的函數(shù)關(guān)系式是:y= x。

(3)①由(2)可知A0A1=2,A1A2=4,A2A3=6,得A n1 A n=2 n。

②猜測(cè)這是與直線y=x平行且過(guò)A(2,0)的一條直線,即y=x-2。

可用特殊值法驗(yàn)證:取,得所截得的線段長(zhǎng)度為,換一組拋物線試試,求出的值也為。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知拋物線y=-x2+mx-n的對(duì)稱軸為x=-2,且與x軸只有一個(gè)交點(diǎn).
(1)求m,n的值;
(2)把拋物線沿x軸翻折,再向右平移2個(gè)單位,向下平移1個(gè)單位,得到新的拋物線C,求新拋物線C的解析式;
(3)已知P是y軸上的一個(gè)動(dòng)點(diǎn),定點(diǎn)B的坐標(biāo)為(0,1),問(wèn):在拋物線C上是否存在點(diǎn)D,使△BPD為等邊三角形?若存在,請(qǐng)求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知直線y=-
1
2
x+1
分別交y軸、x軸于A,B兩點(diǎn),以線段AB為邊向上作正方形ABCD過(guò)點(diǎn)A,D,C的拋物線y=ax2+bx+1與直線的另一交點(diǎn)為點(diǎn)E
(1)點(diǎn)C的坐標(biāo)為
 
;點(diǎn)D的坐標(biāo)為
 
.并求出拋物線的解析式;
(2)若正方形以每秒
5
個(gè)單位長(zhǎng)度的速度沿射線AB下滑,直至頂點(diǎn)D落在x軸上時(shí)停止.設(shè)正方形落在x軸下方部分的面積為S,求S關(guān)于滑行時(shí)間t的函數(shù)關(guān)系式,并寫出相應(yīng)自變量t的取值范圍;
(3)在(2)的條件下,拋物線與正方形一起平移,同時(shí)停止,求拋物線上C,E兩點(diǎn)間的拋物線弧所掃過(guò)的面積.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y=ax2+bx+c過(guò)點(diǎn)C(0,3),頂點(diǎn)P(2,-1),直線x=m(m>3)交x軸于點(diǎn)D,拋物線交x軸于A、B兩點(diǎn)(如圖10).
(1)①求得拋物線的函數(shù)解析式為
y=x2-4x+3
y=x2-4x+3
;
②A、B兩點(diǎn)的坐標(biāo)是A(
(1,0)
(1,0)
),B(
(3,0)
(3,0)
);
③該拋物線關(guān)于原點(diǎn)成中心對(duì)稱的拋物線的函數(shù)解析式是
y=-x2-4x-3
y=-x2-4x-3
;
④將已知拋物線平移,使頂點(diǎn)落在原點(diǎn),則平移后得到的新拋物線的函數(shù)解析式是
y=x2
y=x2

(2)若直線x=m(m>3)上有一點(diǎn)E(E在第一象限),使得以B、E、D為頂點(diǎn)的三角形和以A、C、O為頂點(diǎn)的三角形相似,求E點(diǎn)的坐標(biāo)(用m的代數(shù)式表示)
(3)在(2)成立的條件下,拋物線上是否存在一點(diǎn)F,使得四邊形ABEF為平行四邊形,若存在,求出m的值及平行四邊形ABEF的面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•自貢)已知拋物線y=ax2+2x+3(a≠0)有如下兩個(gè)特點(diǎn):①無(wú)論實(shí)數(shù)a怎樣變化,其頂點(diǎn)都在某一條直線l上;②若把頂點(diǎn)的橫坐標(biāo)減少
1
a
,縱坐標(biāo)增大
1
a
分別作為點(diǎn)A的橫、縱坐標(biāo);把頂點(diǎn)的橫坐標(biāo)增加
1
a
,縱坐標(biāo)增加
1
a
分別作為點(diǎn)B的橫、縱坐標(biāo),則A,B兩點(diǎn)也在拋物線y=ax2+2x+3(a≠0)上.
(1)求出當(dāng)實(shí)數(shù)a變化時(shí),拋物線y=ax2+2x+3(a≠0)的頂點(diǎn)所在直線l的解析式;
(2)請(qǐng)找出在直線l上但不是該拋物線頂點(diǎn)的所有點(diǎn),并說(shuō)明理由;
(3)你能根據(jù)特點(diǎn)②的啟示,對(duì)一般二次函數(shù)y=ax2+bx+c(a≠0)提出一個(gè)猜想嗎?請(qǐng)用數(shù)學(xué)語(yǔ)言把你的猜想表達(dá)出來(lái),并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線l:y=ax2+bx+c(其中a、b、c都不等于0),它的頂點(diǎn)P的坐標(biāo)是(-
b
2a
,
4ac-b2
4a
),與y軸的交點(diǎn)是M(0,c).我們稱以M為頂點(diǎn),對(duì)稱軸是y軸且過(guò)點(diǎn)P的拋物線為拋物線l的伴隨拋物線,直線PM為l的伴隨直線.
(1)請(qǐng)直接寫出拋物線y=2x2-4x+1的伴隨拋物線和伴隨直線的解析式:伴隨拋物線的解析式
y=-2x2+1
y=-2x2+1
,伴隨直線的解析式
y=-2x+1
y=-2x+1
;
(2)若一條拋物線的伴隨拋物線和伴隨直線分別是y=-x2-3和y=-x-3,則這條拋物線的解析式是
y=x2-2x-3
y=x2-2x-3

(3)求拋物線l:y=ax2+bx+c(其中a、b、c都不等于0)的伴隨拋物線和伴隨直線的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案