如圖,⊙O的半徑為6cm,直線AB是⊙O的切線,切點(diǎn)為點(diǎn)B,弦BC∥AO,若∠A=30°,則劣弧的長為    cm.
【答案】分析:根據(jù)切線的性質(zhì)可得出OB⊥AB,繼而求出∠BOA的度數(shù),利用弦BC∥AO,及OB=OC可得出∠BOC的度數(shù),代入弧長公式即可得出答案.
解答:解:∵直線AB是⊙O的切線,
∴OB⊥AB,
又∵∠A=30°,
∴∠BOA=60°,
∵弦BC∥AO,OB=OC,
∴△OBC是等邊三角形,
即可得∠BOC=60°,
∴劣弧的長==2πcm.
故答案為:2π.
點(diǎn)評:此題考查了弧長的計(jì)算公式、切線的性質(zhì),根據(jù)切線的性質(zhì)及圓的性質(zhì)得出△OBC是等邊三角形是解答本題的關(guān)鍵,另外要熟練記憶弧長的計(jì)算公式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為5,AB=5
3
,C是圓上一點(diǎn),則∠ACB=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為3,直徑AB⊥弦CD,垂足為E,點(diǎn)F是BC的中點(diǎn),那么EF2+OF2=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為
5
,圓心與坐標(biāo)原點(diǎn)重合,在直角坐標(biāo)系中,把橫坐標(biāo)、縱坐標(biāo)都是整數(shù)的點(diǎn)稱為格點(diǎn),則⊙O上格點(diǎn)有
 
個(gè),設(shè)L為經(jīng)過⊙O上任意兩個(gè)格點(diǎn)的直線,則直線L同時(shí)經(jīng)過第一、二、四象限的概率是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為13cm,弦AB∥CD,兩弦位于圓心O的兩側(cè),AB=24cm,CD=10cm,求AB和CD的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙O的半徑為5,P是弦MN上的一點(diǎn),且MP:PN=1:2.若PA=2,則MN的長為
6
2
6
2

查看答案和解析>>

同步練習(xí)冊答案