分析:先根據(jù)已知條件求出AC的長及∠B的度數(shù),再根據(jù)圖形旋轉(zhuǎn)的性質(zhì)及等邊三角形的判定定理判斷出△BCD的形狀,進而得出∠DCF的度數(shù),由直角三角形的性質(zhì)可判斷出DF是△ABC的中位線,由三角形的面積公式即可得出結(jié)論.
解答:∵△ABC是直角三角形,∠ACB=90°,∠A=30°,BC=2,
∴∠B=60°,AC=BC×cot∠A=2×
=2
,AB=2BC=4,
∵△EDC是△ABC旋轉(zhuǎn)而成,
∴BC=CD=BD=
AB=2,
∵∠B=60°,
∴△BCD是等邊三角形,
∴∠BCD=60°,
∴∠DCF=∠BCA-∠BCD=30°,
∵∠EDC=∠B=60°,
∴∠DFC=90°,
即DE⊥AC,
∴DE∥BC,
∵BD=
AB=2,
∴DF是△ABC的中位線,
∴DF=
BC=
×2=1,CF=
AC=
×2
=
,
∴S
△CDF=
DF×CF=
×
=
.
故答案為:
.
點評:本題考查的是圖形旋轉(zhuǎn)的性質(zhì)及直角三角形的性質(zhì)、三角形中位線定理及三角形的面積公式,熟知圖形旋轉(zhuǎn)的性質(zhì)是解答此題的關(guān)鍵,即:
①對應(yīng)點到旋轉(zhuǎn)中心的距離相等;
②對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;
③旋轉(zhuǎn)前、后的圖形全等.