【題目】已知在四邊形ABCD中,ABCD,對角線ACBD相交于點O,那么下列條件中能判定這個四邊形是矩形的是( 。

A.ADBC,ACBDB.ACBD,∠BAD=∠BCD

C.AOCOABBCD.AOOBACBD

【答案】B

【解析】

根據(jù)矩形的判定方法,一一判斷即可解決問題.

解:AABDC,ADBC,無法得出四邊形ABCD是平行四邊形,故無法判斷四邊形ABCD是矩形.故錯誤;


B、∵ABCD,
∴∠BAD+∠ABC=∠ADC+∠BCD180°,
∵∠BAD=∠BCD,
∴∠ABC=∠ADC,
∴得出四邊形ABCD是平行四邊形,
ACBD,
∴四邊形ABCD是矩形.故正確;
C、∵AOCO,ABBC
BDAC,∠ABD=∠CBD,
ABCD
∴∠ABD=∠CDB,
∴∠CBD=∠CDB,
BCCD
ABCD,
∴四邊形ABCD是菱形,無法判斷四邊形ABCD是矩形.故錯誤;
DAOOB,ACBD無法判斷四邊形ABCD是矩形,故錯誤;
故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在ABC中,小明按照下列作圖步驟進行尺規(guī)作圖(示意圖與作圖步驟如表),那么交點OABC的(

示意圖

作圖步驟

1)分別以點B、C為圓心,大于BC長為半徑作圓弧,兩弧分別交于點M、N,聯(lián)結(jié)MNBC于點D;

2)分別以點AC為圓心,大于AC長為半徑作圓弧,兩弧分別交于點P、Q,聯(lián)結(jié)PQAC于點E;

3)聯(lián)結(jié)AD、BE,相交于點O

A.外心B.內(nèi)切圓的圓心C.重心D.中心

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于平面直角坐標(biāo)系中的任意一點Pab),我們定義:當(dāng)k為常數(shù),且k≠0時,點Pa+,ka+b)為點Pk對應(yīng)點

1)點P(﹣21)的“3對應(yīng)點P的坐標(biāo)為   ;若點P2對應(yīng)點P的坐標(biāo)為(﹣3,6),且點P的縱坐標(biāo)為4,則點P的橫坐標(biāo)a   ;

2)若點Pk對應(yīng)點P在第一、三象限的角平分線(原點除外)上,求k值;

3)若點Px軸的負(fù)半軸上,點Pk對應(yīng)點P點,且∠OP'P30°,求k值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新冠肺炎疫情期間,我市對學(xué)生進行了停課不停學(xué)的線上教學(xué)活動.某中學(xué)為了解這期間九年級學(xué)生數(shù)學(xué)學(xué)習(xí)的情況,開學(xué)后進行了兩次診斷性練習(xí).綜合成績由兩次練習(xí)成績組成,其中第一次練習(xí)成績占40%,第二次練習(xí)成績占60%.當(dāng)綜合成績不低于135分時,該生數(shù)學(xué)學(xué)科綜合評價為優(yōu)秀.

1)小明同學(xué)的兩次練習(xí)成績之和為260分,綜合成績?yōu)?/span>132分,則他這兩次練習(xí)成績各得多少分?

2)如果小張同學(xué)第一次練習(xí)成績?yōu)?/span>120分,綜合成績要達(dá)到優(yōu)秀,他的第二次練習(xí)成績至少要得多少分?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如果三角形的兩個內(nèi)角∠α∠β滿足∠α=2∠β,那么,我們將這樣的三角形稱為倍角三角形.如果一個等腰三角形是倍角三角形,那么這個等腰三角形的腰長與底邊長的比值為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在平面直角坐標(biāo)系xOy中,拋物線yax2+bx+4經(jīng)過點A(﹣3,0)和點B32),與y軸相交于點C

1)求這條拋物線的表達(dá)式;

2)點P是拋物線在第一象限內(nèi)一點,聯(lián)結(jié)AP,如果點C關(guān)于直線AP的對稱點D恰好落在x軸上,求直線AP的截距;

3)在(2)小題的條件下,如果點Ey軸正半軸上一點,點F是直線AP上一點.當(dāng)△EAO與△EAF全等時,求點E的縱坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為弘揚傳統(tǒng)文化,某校開展了傳承經(jīng)典文化,閱讀經(jīng)典名著活動.為了解七、八年級學(xué)生(七、八年級各有600名學(xué)生)的閱讀效果,該校舉行了經(jīng)典文化知識競賽.現(xiàn)從兩個年級各隨機抽取20名學(xué)生的競賽成績(百分制)進行分析,過程如下:

收集數(shù)據(jù):

七年級:79,85,73,80,7576,87,70,75,94,75,79,81,7175,8086,59,83,77

八年級:92,74,87,82,72,81,9483,7783,80,81,71,81,7277,82,8070,41

整理數(shù)據(jù):

七年級

0

1

0

a

7

1

八年級

1

0

0

7

b

2

分析數(shù)據(jù):

平均數(shù)

眾數(shù)

中位數(shù)

七年級

78

75

八年級

78

80.5

應(yīng)用數(shù)據(jù):

(1)由上表填空:a= ,b= c= ,d=

(2)估計該校七、八兩個年級學(xué)生在本次競賽中成績在90分以上的共有多少人?

(3)你認(rèn)為哪個年級的學(xué)生對經(jīng)典文化知識掌握的總體水平較好,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為落實疫情期間的垃圾分類,樹立全面環(huán)保意識,某校舉行了“垃圾分類,綠色環(huán)!敝R競賽活動,根據(jù)學(xué)生的成績劃分為,,四個等級,并繪制了不完整的兩種統(tǒng)計圖:

根據(jù)圖中提供的信息,回答下列問題:

1)參加知識競賽的學(xué)生共有______人,并把條形統(tǒng)計圖補充完整;

2)扇形統(tǒng)計圖中,______,______,等級對應(yīng)的圓心角為______度;

3)小明是四名獲等級的學(xué)生中的一位,學(xué)校將從獲等級的學(xué)生中任選取2人,參加市舉辦的知識競賽,請用列表法或畫樹狀圖,求小明被選中參加區(qū)知識競賽的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明對教材課題學(xué)習(xí)中的用一張正方形折出一個正八邊形的問題進行了認(rèn)真地探索.他先把正方形沿對角線對折,再把對折,使點落在上,記為點.然后沿的中垂線折疊,得到折痕,如圖1,類似地,折出其余三條折痕,得到八邊形,如圖2

1)求證:是等腰直角三角形.

2)若,求的長.(用含的代數(shù)式表示)

3)我們把八條邊長相等,八個內(nèi)角都相等的八邊形叫做正八邊形,試說明八邊形是正八邊形,請把過程補充完整.

解:理由如下:

同理可得:

同理可得:

∴八邊形是正八邊形.

查看答案和解析>>

同步練習(xí)冊答案