【題目】為落實疫情期間的垃圾分類,樹立全面環(huán)保意識,某校舉行了“垃圾分類,綠色環(huán)保”知識競賽活動,根據(jù)學(xué)生的成績劃分為,四個等級,并繪制了不完整的兩種統(tǒng)計圖:

根據(jù)圖中提供的信息,回答下列問題:

1)參加知識競賽的學(xué)生共有______人,并把條形統(tǒng)計圖補(bǔ)充完整;

2)扇形統(tǒng)計圖中,______,______,等級對應(yīng)的圓心角為______度;

3)小明是四名獲等級的學(xué)生中的一位,學(xué)校將從獲等級的學(xué)生中任選取2人,參加市舉辦的知識競賽,請用列表法或畫樹狀圖,求小明被選中參加區(qū)知識競賽的概率.

【答案】140,條形統(tǒng)計圖見解析;(210,40144;(3

【解析】

1)從兩個統(tǒng)計圖可得,“D的有12人,占調(diào)查人數(shù)的30%,可求出調(diào)查人數(shù);進(jìn)而求出“B的人數(shù),即可補(bǔ)全條形統(tǒng)計圖;
2)計算出“A所占的百分比,“C所占的百分比,進(jìn)而求出“C所對應(yīng)的圓心角的度數(shù);
3)用列表法列舉出所有等可能出現(xiàn)的情況,從中找出符合條件的情況數(shù),進(jìn)而求出概率.

解:(112÷30%=40人,40×20%=8人,
故答案為:40,補(bǔ)全條形統(tǒng)計圖如圖所示:


24÷40=10%,16÷40=40%,
360°×40%=144°
故答案為:10,40,144
3)設(shè)除小明以外的三個人記作A、BC,從中任意選取2人,所有可能出現(xiàn)的情況如下:

共有12中可能出現(xiàn)的情況,其中小明被選中的有6種,
所以小明被選中參加區(qū)知識競賽的概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在銳角三角形ABC中,點(diǎn)D,E分別在邊AC,AB上,AGBC于點(diǎn)G,AFDE于點(diǎn)F,EAF=GAC.

(1)求證:ADE∽△ABC;

(2)若AD=3,AB=5,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開設(shè)了“3D”打印、數(shù)學(xué)史、詩歌欣賞、陶藝制作四門校本課程,為了解學(xué)生對這四門校本課程的喜愛情況,對學(xué)生進(jìn)行了隨機(jī)問卷調(diào)查(問卷調(diào)查表如圖所示),將調(diào)查結(jié)果整理后繪制了(圖1)、(圖2)兩幅均不完整的統(tǒng)計圖.

請您根據(jù)圖中提供的信息回答下列問題:

1)統(tǒng)計圖中的a= ,b=

2)“D”對應(yīng)扇形的圓心角為 度;

3)根據(jù)調(diào)查結(jié)果,請您估計該校1200名學(xué)生中最喜歡“數(shù)學(xué)史”校本課程的人數(shù);

4)小明和小亮參加校本課程學(xué)習(xí),若每人從“A”、“B”、“C”三門校本課程中隨機(jī)選取一門,請用畫樹狀圖或列表格的方法,求兩人恰好選中同一門校本課程的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,對稱軸為直線的拋物線經(jīng)過、兩點(diǎn),與軸的另一個交點(diǎn)為,點(diǎn)軸上,且

1)求該拋物線的表達(dá)式;

2)設(shè)該拋物線上的一個動點(diǎn)的橫坐標(biāo)為

①當(dāng)時,求四邊形的面積的函數(shù)關(guān)系式,并求出的最大值;

②點(diǎn)在直線上,若以為邊,點(diǎn)、、、為頂點(diǎn)的四邊形是平行四邊形,請求出所有符合條件的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+3x軸交于A(﹣3,0),Bl,0)兩點(diǎn),與y軸交于點(diǎn)C

1)求拋物線的解析式;

2)點(diǎn)P是拋物線上的動點(diǎn),且滿足SPAO2SPCO,求出P點(diǎn)的坐標(biāo);

3)連接BC,點(diǎn)Ex軸一動點(diǎn),點(diǎn)F是拋物線上一動點(diǎn),若以BC、EF為頂點(diǎn)的四邊形是平行四邊形時,請直接寫出點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)左),與軸交于點(diǎn),連接,點(diǎn)為二次函數(shù)圖象上的動點(diǎn).

1)若的面積為3,求拋物線的解析式;

2)在(1)的條件下,若在軸上存在點(diǎn),使得,求點(diǎn)的坐標(biāo);

3)若為對稱軸右側(cè)拋物線上的動點(diǎn),直線軸于點(diǎn),直線軸于點(diǎn),判斷的值是否為定值,若是,求出定值,若不是請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:

1 2 3

1)初步思考:

如圖1, 中,已知,BC=4NBC上一點(diǎn)且,試說明:

2)問題提出:

如圖2,已知正方形ABCD的邊長為4,圓B的半徑為2,點(diǎn)P是圓B上的一個動點(diǎn),求的最小值.

3)推廣運(yùn)用:

如圖3,已知菱形ABCD的邊長為4,∠B60°,圓B的半徑為2,點(diǎn)P是圓B上的一個動點(diǎn),求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰△ABC的底邊BC=20,面積為120,點(diǎn)F在邊BC上,且BF=3FC,EG是腰AC的垂直平分線,若點(diǎn)DEG上運(yùn)動,則△CDF周長的最小值為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)Ax1y1)、Bx2y2)在二次函數(shù)yx2mxn的圖像上,當(dāng)x11x23時,y1y2

1)若Pa,b1),Q3,b2)是函數(shù)圖象上的兩點(diǎn),b1b2,則實數(shù)a的取值范圍是(

Aa1 Ba3 Ca1a3 D1a3

2)若拋物線與x軸只有一個公共點(diǎn),求二次函數(shù)的表達(dá)式.

3)若對于任意實數(shù)x1、x2都有y1y2≥2,則n的范圍是

查看答案和解析>>

同步練習(xí)冊答案