【題目】如圖,已知∠AOB=∠COD=90°,∠BOC=34°.

(1)判斷BOC與AOD之間的數(shù)量關(guān)系,并說明理由;

(2)若OE平分AOC,求EOC的余角的度數(shù).

【答案】(1)BOC+∠AOD=360°﹣AOB﹣COD=180°;

(2)28°.

【解析】

(1)根據(jù)角之間的關(guān)系解答即可;
(2)根據(jù)角平分線的定義和互余解答即可.

(1)BOC與∠AOD之間的數(shù)量關(guān)系為∠BOC+AOD=180°,

因?yàn)椤?/span>AOB=COD=90°,AOB+BOC+COD+AOD=360°,

所以∠BOC+AOD=360°﹣AOB﹣COD=180°,

(2)因?yàn)椤?/span>AOB=90°,BOC=34°,

所以∠AOC=AOB+BOC=124°,

因?yàn)?/span>OE平分∠AOC,

所以∠E0C=AOE=AOC=62°,

所以∠EOC余角的度數(shù)為90°﹣E0C=28°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是以原點(diǎn)為圓心, 為半徑的圓,點(diǎn)P是直線y=﹣x+6上的一點(diǎn),過點(diǎn)P作⊙O的一條切線PQ,Q為切點(diǎn),則切線長(zhǎng)PQ的最小值為( )

A.3
B.4
C.6﹣
D.3 ﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)1點(diǎn)20分時(shí),時(shí)鐘的時(shí)針與分針的夾角是幾度?

(2)在時(shí)鐘上,7點(diǎn)到8點(diǎn)之間,時(shí)針和分針何時(shí)成30°的角?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲、乙兩漁船同時(shí)從港口O出發(fā)外出捕魚,乙沿南偏東30°方向以每小時(shí)10海里的速度航行,甲沿南偏西75°方向以每小時(shí)10 海里的速度航行,當(dāng)航行1小時(shí)后,甲在A處發(fā)現(xiàn)自己的漁具掉在乙船上,于是迅速改變航向和速度,仍以勻速沿南偏東60°方向追趕乙船,正好在B處追上.則甲船追趕乙船的速度為海里/小時(shí)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延長(zhǎng)CA至點(diǎn)E,使AE=AC;延長(zhǎng)CB至點(diǎn)F,使BF=BC.連接AD,AF,DF,EF.延長(zhǎng)DB交EF于點(diǎn)N.
(1)求證:AD=AF;
(2)求證:BD=EF;
(3)試判斷四邊形ABNE的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=kx﹣6與拋物線y=ax2+bx+c相交于A,B兩點(diǎn),且點(diǎn)A(1,﹣4)為拋物線的頂點(diǎn),點(diǎn)B在x軸上.

(1)求拋物線的解析式;
(2)在(1)中拋物線的第二象限圖象上是否存在一點(diǎn)P,使△POB與△POC全等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)若點(diǎn)Q是y軸上一點(diǎn),且△ABQ為直角三角形,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以直線AB上一點(diǎn)O為端點(diǎn)作射線 OC使BOC=60°,將一個(gè)直角三角形的直角頂點(diǎn)放在點(diǎn)O處.(注:∠DOE=90°)

(1)如圖1,若直角三角板DOE的一邊OD放在射線OB,COE= °;

(2)如圖2,將直角三角板DOE繞點(diǎn)O逆時(shí)針方向轉(zhuǎn)動(dòng)到某個(gè)位置,OE恰好平分AOC,請(qǐng)說明OD所在射線是BOC的平分線

(3)如圖3,將三角板DOE繞點(diǎn)O逆時(shí)針轉(zhuǎn)動(dòng)到某個(gè)位置時(shí)若恰好COD= AOE,BOD的度數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下四個(gè)結(jié)論:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正確的結(jié)論有(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市為提倡節(jié)約用水,準(zhǔn)備實(shí)行自來水“階梯計(jì)費(fèi)”方式,用戶用水不超出基本用水量的部分享受基本價(jià)格,超出基本用水量的部分實(shí)行超價(jià)收費(fèi).為更好地決策,自來水公司的隨機(jī)抽取了部分用戶的用水量數(shù)據(jù),并繪制了如圖不完整的統(tǒng)計(jì)圖(每組數(shù)據(jù)包括在右端點(diǎn)但不包括左端點(diǎn)),請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問題:
(1)此次抽樣調(diào)查的樣本容量是
(2)補(bǔ)全頻數(shù)分布直方圖,并求扇形圖中“15噸~20噸”部分的圓心角的度數(shù).
(3)如果自來水公司將基本用水量定位每戶25噸,那么該地區(qū)6萬用戶中約有多少用戶的用水全部享受基本價(jià)格?

查看答案和解析>>

同步練習(xí)冊(cè)答案