【題目】16位參加百米半決賽同學(xué)的成績(jī)各不相同,按成績(jī)?nèi)∏?/span>8位進(jìn)入決賽.如果小劉知道了自己的成績(jī)后,要判斷能否進(jìn)入決賽,其他15位同學(xué)成績(jī)的下列數(shù)據(jù)中,能使他得出結(jié)論的是( )

A. 平均數(shù) B. 眾數(shù)

C. 中位數(shù) D. 方差

【答案】C

【解析】∵其他15同學(xué)成績(jī)的中位數(shù)剛好是從高分到低分排列的第8名,

他只需要知道其他15位同學(xué)成績(jī)的中位數(shù)就可以知道自己能否進(jìn)入決賽了.

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知多項(xiàng)式x2+3x=3,可求得另一個(gè)多項(xiàng)式3x2+9x﹣4的值為(
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】盤錦紅海灘景區(qū)門票價(jià)格80元/人,景區(qū)為吸引游客,對(duì)門票價(jià)格進(jìn)行動(dòng)態(tài)管理,非節(jié)假日打a折,節(jié)假日期間,10人以下(包括10人)不打折,10人以上超過10人的部分打b折,設(shè)游客為x人,門票費(fèi)用為y元,非節(jié)假日門票費(fèi)用y1(元)及節(jié)假日門票費(fèi)用y2(元)與游客x(人)之間的函數(shù)關(guān)系如圖所示.
(1)a= , b=;
(2)直接寫出y1、y2與x之間的函數(shù)關(guān)系式;
(3)導(dǎo)游小王6月10日(非節(jié)假日)帶A旅游團(tuán),6月20日(端午節(jié))帶B旅游團(tuán)到紅海灘景區(qū)旅游,兩團(tuán)共計(jì)50人,兩次共付門票費(fèi)用3040元,求A、B兩個(gè)旅游團(tuán)各多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算下列各題:
(1) +(- )-(- )+(+ );
(2) +(-71) + +(-9 );
(3)-9 ×81
(4)(﹣36)×(﹣ +
(5)-15+(-2)2×( )- ÷3;
(6)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡(jiǎn):
(1)12x﹣20x+10x
(2)2(2a﹣3b)﹣3(2b﹣3a)
(3)﹣5m2n+2﹣2mn+6m2n+3mn﹣3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,可以單獨(dú)用正三角形、正方形或正六邊形鑲嵌平面.
如果我們要同時(shí)用兩種不同的正多邊形鑲嵌平面,可能設(shè)計(jì)出幾種不同的組合方案?
問題解決:
猜想1:是否可以同時(shí)用正方形、正八邊形兩種正多邊形組合進(jìn)行平面鑲嵌?
驗(yàn)證1:在鑲嵌平面時(shí),設(shè)圍繞某一點(diǎn)有x個(gè)正方形和y個(gè)正八邊形的內(nèi)角可以拼成一個(gè)周角.根據(jù)題意,可得方程:90x+ y=360,整理得:2x+3y=8,
我們可以找到方程的正整數(shù)解為
結(jié)論1:鑲嵌平面時(shí),在一個(gè)頂點(diǎn)周圍圍繞著1個(gè)正方形和2個(gè)正八邊形的內(nèi)角可以拼成一個(gè)周角,所以同時(shí)用正方形和正八邊形兩種正多邊形組合可以進(jìn)行平面鑲嵌.
猜想2:是否可以同時(shí)用正三角形和正六邊形兩種正多邊形組合進(jìn)行平面鑲嵌?若能,請(qǐng)按照上述方法進(jìn)行驗(yàn)證,并寫出所有可能的方案;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高產(chǎn)品的附加值,某公司計(jì)劃將研發(fā)生產(chǎn)的1200件新產(chǎn)品進(jìn)行精加工后再投放市場(chǎng).現(xiàn)有甲、乙兩個(gè)工廠都具備加工能力,公司派出相關(guān)人員分別到這兩間工廠了解情況,獲得如下信息: 信息一:甲工廠單獨(dú)加工完成這批產(chǎn)品比乙工廠單獨(dú)加工完成這批產(chǎn)品多用10天;
信息二:乙工廠每天加工的數(shù)量是甲工廠每天加工數(shù)量的1.5倍.
根據(jù)以上信息,求甲、乙兩個(gè)工廠每天分別能加工多少件新產(chǎn)品?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,對(duì)角線AC為⊙O的直徑,過點(diǎn)C作AC的垂線交AD的延長(zhǎng)線于點(diǎn)E,點(diǎn)F為CE的中點(diǎn),連接DB,DC,DF.

(1)求∠CDE的度數(shù);

(2)求證:DF是⊙O的切線;

(3)若AC=DE,求tan∠ABD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是由邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形的網(wǎng)格,在格點(diǎn)中找一點(diǎn)C,使△ABC是等腰三角形,這樣的點(diǎn)C有個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案