若拋物線與x軸交于不同的兩點,則的取值范圍是       ____.

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知拋物線y=-x2+2mx-m2-m+3
(1)證明拋物線頂點一定在直線y=-x+3上;
(2)若拋物線與x軸交于M、N兩點,當OM•ON=3,且OM≠ON時,求拋物線的解析式;
(3)若(2)中所求拋物線頂點為C,與y軸交點在原點上方,拋物線的對稱軸與x軸交于點B,直線y=-x+3與x軸交于點A.點P為拋物線對稱軸上一動點,過點P作PD⊥AC,垂足D在線段AC上.試問:是否存在點P,使S△PAD=
14
S△ABC?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知拋物線y=2x2-2(m-1)x-m.
(1)求證:無論m為任何實數(shù),此拋物線與x軸總有兩個交點;
(2)設拋物線與x軸交于點A(x1,0)、點B(x2,0),且x1<0<x2
①當OA+OB=2時,求此拋物線的解析式;
②若拋物線與y軸交于點C,是否存在這樣的拋物線,使△ABC為直角三角形;若存在,求出拋物線的解析式;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:拋物線y=x2+(1-2a)x+a2( a≠0 )與x軸交于點A(x1,0)、B(x2,0),且x1≠x2
(1)求a的取值范圍,并證明A、B兩點都在原點O的左側;
(2)若拋物線與y軸交于點C,是否存在這樣的a使得OA2+OB2=OA+OB+OC-1成立,若存在,求出a,若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

己知:拋物線y=x2-(k+1)x+k
(1)試求k為何值時,拋物線與x軸只有一個公共點;
(2)如圖,若拋物線與x軸交于A,B兩點(點A在點B的左邊),與y軸的負半軸交于點C,精英家教網(wǎng)試問:是否存在實數(shù)k,使△AOC與△COB相似?若存在,求出相應的k的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標系中,拋物線y=-x2+2x+c與y軸交于點D(0,3).
(1)直接寫出c的值;
(2)若拋物線與x軸交于A、B兩點(點B在點A的右邊),頂點為C點,求直線BC的解析式;
(3)已知點P是直線BC上一個動點,
①當點P在線段BC上運動時(點P不與B、C重合),過點P作PE⊥y軸,垂足為E,連接BE.設點P的坐標為(x,y),△PBE的面積為s,求s與x的函數(shù)關系式,寫出自變量x的取值范圍,并求出s的最大值;
②試探索:在直線BC上是否存在著點P,使得以點P為圓心,半徑為r的⊙P,既與拋物線的對稱軸相切,又與以點C為圓心,半徑為1的⊙C相切?如果存在,試求r的值,并直接寫出點P的坐標;如果不存在,請說明理由.

查看答案和解析>>

同步練習冊答案