如圖,將正五邊形ABCDE的C點固定,并依順時針方向旋轉(zhuǎn),若要使得新五邊形A′B′C′D′E′的頂點D′落在直線BC上,則至少要旋轉(zhuǎn)______°.
正五邊形ABCDE的一個外角的度數(shù)=
360°
5
=72°.
即∠DCP=72°,
當(dāng)將正五邊形ABCDE的C點固定,并依順時針方向旋轉(zhuǎn),使得新五邊形A′B′C′D′E′的頂點D′落在直線BC上,
則∠DAD′等于旋轉(zhuǎn)角,所以旋轉(zhuǎn)的最小角度為∠DCP=72°.
故答案為72°.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

正方形ABCD在坐標(biāo)系中的位置如圖所示,將正方形ABCD繞D點順時針方向旋轉(zhuǎn)90°后,B點到達(dá)的位置坐標(biāo)為( 。
A.(-2,2)B.(4,1)C.(3,1)D.(4,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,四邊形ABCD是正方形,△ADE繞著點A旋轉(zhuǎn)90°后到達(dá)△ABF的位置,連接EF,則△AEF的形狀是( 。
A.等腰三角形B.直角三角形
C.等腰直角三角形D.等邊三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知△ABC的頂點A,B,C的坐標(biāo)分別是A(-1,-1),B(-4,-3),C(-4,-1).
(1)作出△ABC關(guān)于原點O中心對稱的圖形△A1B1C1;
(2)寫出△A1B1C1各頂點的坐標(biāo).
解:(2)A1 (______),B1 (______),C1 (______).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在一次研究性學(xué)習(xí)活動中,某小組將兩張互相重合的正方形紙片ABCD和EFGH的中心O用圖釘固定住,保持正方形ABCD不動,順時針旋轉(zhuǎn)正方形EFGH,如圖所示.
(1)小組成員經(jīng)觀察、測量,發(fā)現(xiàn)在旋轉(zhuǎn)過程中,有許多有趣的結(jié)論.下面是旋轉(zhuǎn)角度小于90°時他們得到的一些猜想:
①ME=MA;
②兩張正方形紙片的重疊部分的面積為定值;
③∠MON保持45°不變.
請你對這三個猜想作出判斷(正確的在序號后的括號內(nèi)打上“√”,錯誤的打上“×”):
①( 。;②(  );③( 。
(2)小組成員還發(fā)現(xiàn):(1)中的△EMN的面積S隨著旋轉(zhuǎn)角度∠AOE的變化而變化.請你指出在怎樣的位置時△EMN的面積S取得最大值.(不必證明)
(3)上面的三個猜想中若有正確的,請選擇其中的一個給予證明;若都是錯誤的,請選擇其一說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,△PQR是△ABC經(jīng)過某種變換后得到的圖形.如果△ABC中任意一點M的坐標(biāo)為(a,b),那么它的對應(yīng)點N的坐標(biāo)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

請閱讀下列材料?:
問題:如圖1,在等邊三角形ABC內(nèi)有一點P,且PA=2,PB=
3
,PC=1.求∠BPC度數(shù)的大小和等邊三角形ABC的邊長.
李明同學(xué)的思路是:將△BPC繞點B順時針旋轉(zhuǎn)60°,畫出旋轉(zhuǎn)后的圖形(如圖2).連接PP′,可得△P′PB是等邊三角形(可證),而△PP′A又是直角三角形(由勾股定理的逆定理可證).所以∠AP′B=150°,而∠BPC=∠AP′B=150°.進而把AB放在Rt△APB(可證得)中,用勾股定理求出等邊△ABC的邊長為
7
.問題得到解決.?
[思路分析]首先仔細(xì)閱讀材料,問題中小明的做法總結(jié)起來就是通過旋轉(zhuǎn)固定的角度將已知條件放在同一個(組)圖形中進行研究.旋轉(zhuǎn)60度以后BP就成了BP′,PC成了P′A,借助等量關(guān)系BP′=PP′,于是△APP′就可以計算了.
解決問題:
請你參考李明同學(xué)旋轉(zhuǎn)的思路,探究并解決下列問題:
如圖3,在正方形ABCD內(nèi)有一點P,且PA=
5
,BP=
2
,PC=1.求∠BPC度數(shù)的大小和正方形ABCD的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖①,四邊形AEFG和ABCD都是正方形,且點F在AD上,它們的邊長分別為12,4.

(1)求S△DBF;
(2)把正方形AEFG繞點A按逆時針方向旋轉(zhuǎn)45°得圖②,求圖②中的S△DBF
(3)把正方形AEFG繞點A旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,S△DBF是否存在最大值、最小值?如果存在,直接寫出最大值、最小值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

四邊形ABCD是正方形,△ADF旋轉(zhuǎn)一定的角度后得到△ABE,如圖所示,如果AF=4,AB=4
3
,∠F=60°.
(1)指出旋轉(zhuǎn)中心和旋轉(zhuǎn)角度;
(2)求DE的長度;
(3)求∠EBD的度數(shù);
(4)BE與DF的位置關(guān)系如何?

查看答案和解析>>

同步練習(xí)冊答案