如圖,△ABC內(nèi)接于⊙O,且AB為⊙O的直徑.∠ACB的平分線交⊙O于點D,過點D作⊙O的切線PD交CA的延長線于點P,過點A作AE⊥CD于點E,過點B作BF⊥CD于點F.
(1)求證:DP∥AB;
(2)若AC=6,BC=8,求線段PD的長.
解:(1)證明:如圖,連接OD,
∵AB為⊙O的直徑,∴∠ACB=90°。
∵∠ACB的平分線交⊙O于點D,∴∠ACD=∠BCD=45°。
∴∠DAB=∠ABD=45°!唷鱀AB為等腰直角三角形。
∴DO⊥AB。
∵PD為⊙O的切線,∴OD⊥PD。
∴DP∥AB。
(2)在Rt△ACB中,,
∵△DAB為等腰直角三角形,∴。
∵AE⊥CD,∴△ACE為等腰直角三角形!。
在Rt△AED中,,
∴。
∵AB∥PD,∴∠PDA=∠DAB=45°。∴∠PAD=∠PCD。
又∵∠DPA=∠CPD,∴△PDA∽△PCD!。
∴PA=PD,PC=PD。
又∵PC=PA+AC,∴PD+6=PD,解得PD=。
【解析】
試題分析:(1)連接OD,由AB為⊙O的直徑,根據(jù)圓周角定理得∠ACB=90°,再由∠ACD=∠BCD=45°,則∠DAB=∠ABD=45°,所以△DAB為等腰直角三角形,所以DO⊥AB,根據(jù)切線的性質(zhì)得OD⊥PD,于是可得到DP∥AB。
(2)先根據(jù)勾股定理計算出AB=10,由于△DAB為等腰直角三角形,可得到;由△ACE為等腰直角三角形,得到,在Rt△AED中利用勾股定理計算出DE=,則CD=,易證得∴△PDA∽△PCD,得到,所以PA=PD,PC=PD,然后利用PC=PA+AC可計算出PD。
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com