【題目】為了解中學(xué)生的體能情況,某校抽取了50名八年級(jí)學(xué)生進(jìn)行一分鐘跳繩次數(shù)測(cè)試,將所得數(shù)據(jù)整理后,畫出了頻數(shù)分布直方圖如下圖所示已知圖中從左到右前第一、第二、第三、第五小組的頻率分別為0.04 , 0.12 ,0.4 ,O.28 ,根據(jù)已知條件解答下列問(wèn)題:
(1)第四個(gè)小組的頻率是多少? 你是怎樣得到的?
(2)這五小組的頻數(shù)各是多少?
(3)在這次跳繩中,跳繩次數(shù)的中位數(shù)落在第幾小組內(nèi)?
(4)將頻數(shù)分布直方圖補(bǔ)全,并分別寫出各個(gè)小組的頻數(shù),并畫出頻數(shù)分布折線圖.
【答案】答案見(jiàn)解析
【解析】試題分析:(1)用1減去其余四組的頻率即可;
(2)利用頻數(shù)=頻率乘總數(shù)得到;
(3)中位數(shù)是第25個(gè)同學(xué)、第26個(gè)同學(xué)跳繩次數(shù)之和的一半;
(4)依數(shù)畫圖即可.
試題解析:解:(1)由1減去已知4個(gè)小組的頻率之和得到結(jié)果,第四個(gè)小組的頻率=1﹣(0.04+0.12+0.4+0.28)=0.16;
(2)由頻率=,且知各小組的頻率分別為0.04,0.12,0.4,0.16,0.28及總?cè)藬?shù)為50,故有50×0.04=2,50×0.12=6,50×0.4=20,50×0.16=8,50×0.28=14,從而可知前5個(gè)小組的頻數(shù)分別為2,6,20,8,14;
(3)由中位數(shù)應(yīng)是第25個(gè)同學(xué)、第26個(gè)同學(xué)跳繩次數(shù)之和的一半.
由頻數(shù)分布直方圖可知,第25個(gè)同學(xué)、第26個(gè)同學(xué)跳繩次數(shù)均落在第三個(gè)小組內(nèi).
故而可知在這次測(cè)試中,跳繩次數(shù)的中位數(shù)落在第三小組內(nèi);
(4)由于第四小組的頻數(shù)為8,第一小組頻數(shù)為2,故第四小組的小長(zhǎng)方形的高應(yīng)是第一小組小長(zhǎng)方形的高的4倍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,點(diǎn)D是BC的中點(diǎn),點(diǎn)E在AD上.
(1)求證:BE=CE.
(2)如圖,若BE的延長(zhǎng)線交AC于點(diǎn)F,且BF⊥AC,垂足為F,∠BAC=45,原題設(shè)其它條件不變,求證:△AEF≌△BCF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“世界杯”期間,某娛樂(lè)場(chǎng)所舉辦“消夏看球賽”活動(dòng),需要對(duì)會(huì)場(chǎng)進(jìn)行布置,計(jì)劃在現(xiàn)場(chǎng)安裝小彩燈和大彩燈.已知安裝5個(gè)小彩燈和4個(gè)大彩燈共需150元;安裝7個(gè)小彩燈和6個(gè)大彩燈共需220元.
(1)安裝1個(gè)小彩燈和1個(gè)大彩燈各需多少元?
(2)若場(chǎng)地共需安裝小彩燈和大彩燈300個(gè),費(fèi)用不超過(guò)4350元,則最多安裝大彩燈多少個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O為等邊三角形ABC內(nèi)一點(diǎn),連接OA,OB,OC,以O(shè)B為一邊作∠OBM=60°,且BO=BM,連接CM,OM.
(1)判斷AO與CM的大小關(guān)系并證明;
(2)若OA=8,OC=6,OB=10,判斷△OMC的形狀并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,如果直線l上依次有3個(gè)點(diǎn)A、B、C,那么
(1)在直線l上共有多少射線?多少條線段?
(2)在直線l上增加一個(gè)點(diǎn),共增加了多少條射線?多少條線段?
(3)如果在直線l上增加到n個(gè)點(diǎn),則共有多少條射線?多少條線段?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖一次函數(shù)y= x+1的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B;二次函數(shù)y= x2+bx+c的圖象與一次函數(shù)y= x+1的圖象交于B、C兩點(diǎn),與x軸交于D、E兩點(diǎn)且D點(diǎn)坐標(biāo)為(1,0).
(1)求二次函數(shù)的解析式;
(2)求四邊形BDEC的面積S;
(3)在x軸上是否存在點(diǎn)P,使得△PBC是以P為直角頂點(diǎn)的直角三角形?若存在,求出所有的點(diǎn)P,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一個(gè)形如六邊形的點(diǎn)陣,它的中心是一個(gè)點(diǎn),算做第一層,第二層每邊兩個(gè)點(diǎn),第三層每邊三個(gè)點(diǎn),以此類推.
(1)填寫下表
層數(shù) | 1 | 2 | 3 | 4 | 5 |
該層對(duì)應(yīng)的點(diǎn)數(shù) | 1 | 6 | 12 |
(2)寫出第n層對(duì)應(yīng)的點(diǎn)數(shù)(n≥2);
(3)如果某層一共有72個(gè)點(diǎn),請(qǐng)你求出對(duì)應(yīng)的層數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市出租車計(jì)費(fèi)方法如圖所示,x(km)表示行駛里程,y(元)表示車費(fèi),請(qǐng)根據(jù)圖象回答下面的問(wèn)題:
(1)出租車的起步價(jià)是多少元?當(dāng)x>3時(shí),求y關(guān)于x的函數(shù)關(guān)系式.
(2)若某乘客有一次乘出租車的車費(fèi)為32元,求這位乘客乘車的里程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OCDE的三個(gè)頂點(diǎn)分別是C(3,0),D(3,4),E(0,4).點(diǎn)A在DE上,以A為頂點(diǎn)的拋物線過(guò)點(diǎn)C,且對(duì)稱軸x=1交x軸于點(diǎn)B.連接EC,AC.點(diǎn)P,Q為動(dòng)點(diǎn),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)填空:點(diǎn)A坐標(biāo)為;拋物線的解析式為 .
(2)在圖①中,若點(diǎn)P在線段OC上從點(diǎn)O向點(diǎn)C以1個(gè)單位/秒的速度運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CE上從點(diǎn)C向點(diǎn)E以2個(gè)單位/秒的速度運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)隨之停止運(yùn)動(dòng).當(dāng)t為何值時(shí),△PCQ為直角三角形?
(3)在圖②中,若點(diǎn)P在對(duì)稱軸上從點(diǎn)A開(kāi)始向點(diǎn)B以1個(gè)單位/秒的速度運(yùn)動(dòng),過(guò)點(diǎn)P做PF⊥AB,交AC于點(diǎn)F,過(guò)點(diǎn)F作FG⊥AD于點(diǎn)G,交拋物線于點(diǎn)Q,連接AQ,CQ.當(dāng)t為何值時(shí),△ACQ的面積最大?最大值是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com