【題目】如圖,Rt△ABC中,∠ACB=90°.
(1)作∠BAC的平分線,交BC于點D;(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡)
(2)在(1)的條件下,若BD=5,CD=3,求AC的長.
【答案】(1)見解析;(2)6.
【解析】
(1)先以A為圓心,小于AC長為半徑畫弧,交AC,AB運用H、F;再分別以H、F為圓心,大于HF長為半徑畫弧,兩弧交于點M,最后畫射線AM交CB于D;
(2)過點D作DE⊥AB,垂足為E,先證明△ACD≌△AED得到AC=AE,CD=DE=3,再由勾股定理得求的BE長,然后在Rt△ABC中,設(shè)AC=x,則AB=AE+BE=x+4,最后再次運用勾股定理求解即可.
解:(1)如圖:
(2)過點D作DE⊥AB,垂足為E.則∠AED=∠BED=90°
∵AD平分∠BAC
∴CD=DE
在RtACD和RtAED中
CD=DE,AD=AD
∴ △CDE≌△AED(HL)
∴AC=AE,CD=DE=3
在Rt△BDE中,
由勾股定理得:DE2+BE2=BD2
∴BE2=BD2-DE2=52-32=16.
∴BE=4
在Rt△ABC中,設(shè)AC=x,則AB=AE+BE=x+4.
由勾股定理得:AC2+BC2=AB2,即x2+82=(x+4)2
解得:x=6,即AC=6.
科目:初中數(shù)學 來源: 題型:
【題目】為落實黨中央“長江大保護”新發(fā)展理念,我市持續(xù)推進長江岸線保護,還洞庭湖和長江水清岸綠的自然生態(tài)原貌.某工程隊負責對一面積為33000平方米的非法砂石碼頭進行拆除,回填土方和復(fù)綠施工,為了縮短工期,該工程隊增加了人力和設(shè)備,實際工作效率比原計劃每天提高了20%,結(jié)果提前11天完成任務(wù),求實際平均每天施工多少平方米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點的坐標為,以點為圓心,8為半徑的圓與軸交于,兩點,過作直線與軸負方向相交成的角,且交軸于點,以點為圓心的圓與軸相切于點.
(1)求直線的解析式;
(2)將以每秒1個單位的速度沿軸向左平移,當第一次與外切時,求平移的時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】商店只有雪碧、可樂、果汁、奶汁四種飲料,每種飲料數(shù)量充足,某同學去該店購買飲料,每種飲料被選中的可能性相同.
(1)若他去買一瓶飲料,則他買到奶汁的概率是 ;
(2)若他兩次去買飲料,每次買一瓶,且兩次所買飲料品種不同,請用樹狀圖或列表法求出他恰好買到雪碧和奶汁的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)的圖象分別與軸、軸交于點、,以線段為邊在第一象限內(nèi)作等腰,,則過、兩點直線的解析式為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用適當?shù)姆椒ń庀铝蟹匠蹋?/span>
(1) x2﹣5x﹣6=0;
(2) (1﹣x)2﹣1=;
(3) 8x(x+2)=3x+6;
(4)(y+)(y-)=20.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將一長方形紙片放在平面直角坐標系中,,,,動點從點出發(fā)以每秒1個單位長度的速度沿向終點運動,運動秒時,動點從點出發(fā)以相同的速度沿向終點運動,當點、其中一點到達終點時,另一點也停止運動.
設(shè)點的運動時間為:(秒)
(1)_________,___________(用含的代數(shù)式表示)
(2)當時,將沿翻折,點恰好落在邊上的點處,求點的坐標及直線的解析式;
(3)在(2)的條件下,點是射線上的任意一點,過點作直線的平行線,與軸交于點,設(shè)直線的解析式為,當點與點不重合時,設(shè)的面積為,求與之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)與一次函數(shù)的圖象交點為,,且二次函數(shù)的最小值為,則這個二次函數(shù)的解析式為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某自動化車間計劃生產(chǎn)480個零件,當生產(chǎn)任務(wù)完成一半時,停止生產(chǎn)進行自動化程序軟件升級,用時20分鐘,恢復(fù)生產(chǎn)后工作效率比原來提高了,結(jié)果完成任務(wù)時比原計劃提前了40分鐘,求軟件升級后每小時生產(chǎn)多少個零件?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com