如圖,拋物線(b,c是常數(shù),且c<0)與軸分別交于點A、B(點A位于點B的左側(cè)),與軸的負(fù)半軸交于點C,點A的坐標(biāo)為(-1,0).
(1)請直接寫出點OA的長度;
(2)若常數(shù)b,c滿足關(guān)系式:.求拋物線的解析式.
(3)在(2)的條件下,點P是軸下方拋物線上的動點,連接PB、PC.設(shè)△PBC的面積為S.
①求S的取值范圍;
②若△PBC的面積S為整數(shù),則這樣的△PBC共有多少個(直接寫出結(jié)果)?
(1)OA=1;(2)拋物線的解析式;(3)①0<S<5;②+c,﹣2c;11.
【解析】
試題分析:(1)由點A的坐標(biāo)為(-1,0)可得:OA=1;
(2)根據(jù)拋物線過點A (-1,0),得到:b = c+,聯(lián)立,求出b,c的值即可;
(3)①分兩種情況進行討論:(Ⅰ)當(dāng)﹣1<x<0時;(Ⅱ)當(dāng)0<x<4時;
②由0<S<5,S為整數(shù),得出S=1,2,3,4.分兩種情況進行討論:(Ⅰ)當(dāng)﹣1<x<0時,(Ⅱ)當(dāng)0<x<4時.
試題解析:(1)OA=1;
(2)∵拋物線過點A (-1,0),
∴b=c+,
∵,
∴,
∵c<0,
∴,
∴,
∴拋物線的解析式;
(3)①設(shè)點P坐標(biāo)為(x,).
∵點A的坐標(biāo)為(﹣1,0),點B坐標(biāo)為(4,0),點C坐標(biāo)為(0,﹣2),
∴AB=5,OC=2,直線BC的解析式為y=x﹣2.
分兩種情況:
(Ⅰ)當(dāng)﹣1<x<0時,0<S<S△ACB.
∵S△ACB=AB•OC=5,
∴0<S<5;
(Ⅱ)當(dāng)0<x<4時,過點P作PG⊥x軸于點G,交CB于點F.
∴點F坐標(biāo)為(x,x﹣2),
∴PF=PG﹣GF=﹣(x2﹣x﹣2)+(x﹣2)=﹣x2+2x,
∴S=S△PFC+S△PFB=PF•OB=(﹣x2+2x)×4=﹣x2+4x=﹣(x﹣2)2+4,
∴當(dāng)x=2時,S最大值=4,
∴0<S≤4.
綜上可知0<S<5;
②∵0<S<5,S為整數(shù),
∴S=1,2,3,4.
分兩種情況:
(Ⅰ)當(dāng)﹣1<x<0時,設(shè)△PBC中BC邊上的高為h.
∵點A的坐標(biāo)為(﹣1,0),點B坐標(biāo)為(4,0),點C坐標(biāo)為(0,﹣2),
∴AC2=1+4=5,BC2=16+4=20,AB2=25,
∴AC2+BC2=AB2,∠ACB=90°,BC邊上的高AC=.
∵S=BC•h,∴h=.
如果S=1,那么h=×1=<,此時P點有1個,△PBC有1個;
如果S=2,那么h=×2=<,此時P點有1個,△PBC有1個;
如果S=3,那么h=×3=<,此時P點有1個,△PBC有1個;
如果S=4,那么h=×4=<,此時P點有1個,△PBC有1個;
即當(dāng)﹣1<x<0時,滿足條件的△PBC共有4個;
(Ⅱ)當(dāng)0<x<4時,S=﹣x2+4x.
如果S=1,那么﹣x2+4x=1,即x2﹣4x+1=0,
∵△=16﹣4=12>0,∴方程有兩個不相等的實數(shù)根,此時P點有2個,△PBC有2個;
如果S=2,那么﹣x2+4x=2,即x2﹣4x+2=0,
∵△=16﹣8=8>0,∴方程有兩個不相等的實數(shù)根,此時P點有2個,△PBC有2個;
如果S=3,那么﹣x2+4x=3,即x2﹣4x+3=0,
∵△=16﹣12=4>0,∴方程有兩個不相等的實數(shù)根,此時P點有2個,△PBC有2個;
如果S=4,那么﹣x2+4x=4,即x2﹣4x+4=0,
∵△=16﹣16=0,∴方程有兩個相等的實數(shù)根,此時P點有1個,△PBC有1個;
即當(dāng)0<x<4時,滿足條件的△PBC共有7個;
綜上可知,滿足條件的△PBC共有4+7=11個.
故答案為+c,﹣2c;11.
.
考點:二次函數(shù)綜合題.
科目:初中數(shù)學(xué) 來源: 題型:
| ||
3 |
2 |
3 |
3 |
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com