【題目】一只小蟲子落在數(shù)軸上的某點(diǎn),第一次從向左跳一個(gè)單位到,第二次從向右跳個(gè)單位到,第三次從向左跳個(gè)單位到,第四次從向右跳個(gè)單位到,按以上規(guī)律跳了次時(shí),它落在數(shù)軸上的點(diǎn)所表示的數(shù)恰好是2019,則這只小蟲的初始位置所在的數(shù)是_____

【答案】1969

【解析】

根據(jù)數(shù)軸上的點(diǎn)的移動(dòng)規(guī)律:左減右加可分別用P0表示出P1P2、P3,……,根據(jù)規(guī)律可表示出P100,由點(diǎn)所表示的數(shù)恰好是2019即可求出P0表示的數(shù),可得答案.

P1=P0-1

P2=P1+2=P0-1+2,

P3=P2-3=P0-1+2-3,

……

P100=P0-1+2-3+4-……-99+100=P0+50,

∵點(diǎn)所表示的數(shù)恰好是2019,

P0=2019-50=1969,

∴這只小蟲的初始位置所在的數(shù)是1969,

故答案為:1969

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近年來政府每年出資新建一批廉租房,使城鎮(zhèn)住房困難的居民住房狀況得到改善.下面是某小區(qū)2006~2008年每年人口總數(shù)和人均住房面積的統(tǒng)計(jì)的折線圖(人均住房面積=該小區(qū)住房總面積/該小區(qū)人口總數(shù),單位:㎡/人).

根據(jù)以上信息,則下列說法:①該小區(qū)2006~2008年這三年中,2008年住房總面積最大;②該小區(qū)2007年住房總面積達(dá)到1.728×106 m;③該小區(qū)2008年人均住房面積的增長(zhǎng)率為4%.其中正確的有

A①②③B①②C D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為慶祝祖國(guó)70周年華誕,陽(yáng)光超市銷售甲、乙兩種慶祝商品,該超市若同時(shí)購(gòu)進(jìn)甲、乙兩種商品各10件共花費(fèi)400;若購(gòu)進(jìn)甲種商品30件,購(gòu)進(jìn)乙種商品15件,將用去750元;

1)求甲、乙兩種商品每件的進(jìn)價(jià);

2)由于甲、乙兩種商品受到市民歡迎,十一月份超市決定購(gòu)進(jìn)甲、乙兩種商品共80件,且保持(1)的進(jìn)價(jià)不變,已知甲種商品每件的售價(jià)為15元,乙種商品每件的售價(jià)40元,要使十一月份購(gòu)進(jìn)的甲、乙兩種商品共80件全部銷售完的總利潤(rùn)不少于600元,那么該超市最多購(gòu)進(jìn)甲種商品多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ADBC,垂足為D,AD=CD,點(diǎn)EAD上,DE=BDM、N分別是AB、CE的中點(diǎn).

1)求證:ADB≌△CDE;

2)求MDN的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等腰三角形的一邊長(zhǎng)為2,周長(zhǎng)為8,那么它的腰長(zhǎng)為 ( )

A. 2 B. 3 C. 2或3 D. 不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知 AD 為△ABC 的高線,AD=BC,以 AB 為底邊作等腰 RtABE,連接 ED, EC,延長(zhǎng)CE AD F 點(diǎn),下列結(jié)論:①△ADE≌△BCE;②CEDE;③BD=AF;④SBDE=SACE,其中正確的有(

A. ①③B. ①②④C. ①②③④D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC 為等邊三角形,點(diǎn) D、E 分別在邊 BCAC 上,且 AE=CDAD BE相交于點(diǎn) F.則∠DFE 的度數(shù)為_____°;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10分)

問題提出:用n根相同的木棒搭一個(gè)三角形(木棒無剩余),能搭成多少種不同的等腰三角形?

問題探究:不妨假設(shè)能搭成種不同的等腰三角形,為探究之間的關(guān)系,我們可以從特殊入手,通過試驗(yàn)、觀察、類比,最后歸納、猜測(cè)得出結(jié)論.

探究一:

3根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的三角形?

此時(shí),顯然能搭成一種等腰三角形。所以,當(dāng)時(shí),

4根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的三角形?

只可分成1根木棒、1根木棒和2根木棒這一種情況,不能搭成三角形

所以,當(dāng)時(shí),

5根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的三角形?

若分成1根木棒、1根木棒和3根木棒,則不能搭成三角形

若分為2根木棒、2根木棒和1根木棒,則能搭成一種等腰三角形

所以,當(dāng)時(shí),

6根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的三角形?

若分成1根木棒、1根木棒和4根木棒,則不能搭成三角形

若分為2根木棒、2根木棒和2根木棒,則能搭成一種等腰三角形

所以,當(dāng)時(shí),

綜上所述,可得表


3

4

5

6


1

0

1

1

探究二:

7根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的等腰三角形?

(仿照上述探究方法,寫出解答過程,并把結(jié)果填在表中)

分別用8根、9根、10根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的等腰三角形?

(只需把結(jié)果填在表中)


7

8

9

10






你不妨分別用11根、12根、13根、14根相同的木棒繼續(xù)進(jìn)行探究,……

解決問題:用根相同的木棒搭一個(gè)三角形(木棒無剩余),能搭成多少種不同的等腰三角形?

(設(shè)分別等于、、,其中是整數(shù),把結(jié)果填在表中)











問題應(yīng)用:用2016根相同的木棒搭一個(gè)三角形(木棒無剩余),能搭成多少種不同的等腰三角形?(要求寫出解答過程)

其中面積最大的等腰三角形每個(gè)腰用了__________________根木棒。(只填結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九年級(jí)某班數(shù)學(xué)興趣小組經(jīng)過市場(chǎng)調(diào)查整理出某種商品在第x天(1≤x≤90,且x為整數(shù))的售價(jià)與銷售量的相關(guān)信息如下.已知商品的進(jìn)價(jià)為30/件,設(shè)該商品的售價(jià)為y(單位:元/件),每天的銷售量為p(單位:件),每天的銷售利潤(rùn)為w(單位:元).

時(shí)間x(天)

1

30

60

90

每天銷售量p(件)

198

140

80

20

1)求出wx的函數(shù)關(guān)系式;

2)問銷售該商品第幾天時(shí),當(dāng)天的銷售利潤(rùn)最大?并求出最大利潤(rùn);

3)該商品在銷售過程中,共有多少天每天的銷售利潤(rùn)不低于5600元?請(qǐng)直接寫出結(jié)果.

查看答案和解析>>

同步練習(xí)冊(cè)答案