【題目】如圖,在平面直角坐標(biāo)系xOy中,直線AB與x軸交于點A(﹣3,0),與反比例函數(shù)y= 在第一象限的圖象交于點B(3,m),連接BO,若△AOB面積為9,
(1)求反比例函數(shù)的表達(dá)式和直線AB的表達(dá)式;
(2)若直線AB與y軸交于點C,求△COB的面積.
【答案】
(1)解:∵A點的坐標(biāo)為(﹣3,0),
∴OA=3,
又∵點B(3,m)在第一象限,且△AOB面積為9,
∴ OAm═9,即 ×3m=9,解得m=6,
∴點B的坐標(biāo)為(3,6),
將B(3,6)代入y= 中,得6= ,則k=18,
∴反比例函數(shù)為:y= ,
設(shè)直線AB的表達(dá)式為y=ax+b,則
解得
∴直線AB的表達(dá)式為y=x+3
(2)解:在y=x+3中,令x=0,得y=3,
∴點C的坐標(biāo)為 (0,3),
∴OC=3,
則△COB的面積為: OC×3= ×3×3=
【解析】(1)利用△AOB面積為9,求出m的值,即可求出反比例函數(shù)解析式,再利用A,B的坐標(biāo)求出一次函數(shù)式.(2)先求出OC,再利用△COB的面積為= OC×3,求出△COB的面積.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=ax2﹣2ax﹣1(a是常數(shù),a≠0),下列結(jié)論正確的是( )
A.當(dāng)a=1時,函數(shù)圖象過點(﹣1,1)
B.當(dāng)a=﹣2時,函數(shù)圖象與x軸沒有交點
C.若a>0,則當(dāng)x≥1時,y隨x的增大而減小
D.若a<0,則當(dāng)x≤1時,y隨x的增大而增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知第一象限內(nèi)的點A在反比例函數(shù)y= 的圖象上,第二象限內(nèi)的點B在反比例函數(shù)y= 的圖象上,且OA⊥OB,cosA= ,則k的值為( )
A.﹣3
B.﹣4
C.﹣
D.﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
(1)﹣22× +|1﹣ |+6sin45°+1
(2)3tan30°﹣2tan45°+2sin60°+4cos60°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,三角形紙片△ABC,AB=8,BC=6,AC=5,沿過點B的直線折疊這個三角形,折痕為BD(點D在線段AC上且不與A、C重合).若點C落在AB邊下方的點E處,則△ADE的周長p的取值范圍是( )
A. 7<p<10 B. 5<p<10 C. 5<p<7 D. 7<p<19
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是正三角形ABC內(nèi)的一點,且PA=6,PB=8,PC=10.若將△PAC繞點A逆時針旋轉(zhuǎn)后,得到△P′AB.
(1)求點P與點P′之間的距離;
(2)求∠APB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線AB交y軸于A點,交X軸于B點,A(0,6),B(6,0).點D是線段BO上一點,BN⊥AD交AD的延長線于點N.
(1)如圖,若OM∥BN交AD于點M.點O作0G⊥BN,交BN的延長線于點G,求證:AM=BG
(2)如圖,若∠ADO=67.5°,OM∥BN交AD于點M,交AB于點Q,求的值.
(3)如圖,若OC∥AB交BN的延長線于點C.請證明:∠CDN+2∠BDN=180°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】盒中有x個黑球和y個白球,這些球除顏色外無其他差別.若從盒中隨機取一個球,它是黑球的概率是 ;若往盒中再放進(jìn)1個黑球,這時取得黑球的概率變?yōu)? .
(1)填空:x= , y=;
(2)小王和小林利用x個黑球和y個白球進(jìn)行摸球游戲.約定:從盒中隨機摸取一個,接著從剩下的球中再隨機摸取一個,若兩球顏色相同則小王勝,若顏色不同則小林勝.求兩個人獲勝的概率各是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com