24、如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,AE⊥BC于點(diǎn)E,AD=2,AE=3,∠B=45°.
(1)求∠C的度數(shù)及BE的長;
(2)求BC的長.
(友情提示:過點(diǎn)D作DF⊥BC于點(diǎn)F)
分析:(1)根據(jù)等腰梯形的性質(zhì)即可求出∠C的度數(shù),再根據(jù)等腰直角三角形的性質(zhì)求得BE的長;
(2)過點(diǎn)D作DF⊥BC于點(diǎn)F,由BC=BE+EF+FC求解.
解答:解:(1)在等腰梯形ABCD中,
∵AD∥BC,AB=CD,
∴∠C=∠B=45°. …(1分)
在△ABE中,∵∠AEB=90°,∠B=45°,
∴∠BAE=∠B=45°.
∴BE=AE=3.…(2分)
(2)過點(diǎn)D作DF⊥BC于點(diǎn)F.
∴四邊形AEFD是矩形.…(3分)
∴EF=AD=2.…(4分)
在Rt△ABE和Rt△DCF中,
∵∠B=∠C,AB=CD,∠AEB=∠DFC,
∴△ABE≌△DCF.…(5分)
∴FC=BE=3.…(6分)
∴BC=BE+EF+FC=3+2+3=8.…(7分)
點(diǎn)評:本題考查了等腰梯形的性質(zhì).運(yùn)用的知識:等腰梯形的性質(zhì)(兩腰相等,同一底上的兩個(gè)角相等).技能:作輔助線的能力:梯形作輔助線的方法常用的5種方法的合理選擇和運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm.點(diǎn)P從點(diǎn)A出發(fā),以2cm/s的速度沿AB向終點(diǎn)B運(yùn)動(dòng);點(diǎn)Q從點(diǎn)C出發(fā),以1cm/s的速度沿CD、DA向終點(diǎn)A運(yùn)動(dòng)(P、Q兩點(diǎn)中,有一個(gè)點(diǎn)運(yùn)動(dòng)到終點(diǎn)時(shí),所有運(yùn)動(dòng)即終止).設(shè)P、Q同時(shí)出發(fā)并運(yùn)動(dòng)了t秒.
(1)當(dāng)PQ將梯形ABCD分成兩個(gè)直角梯形時(shí),求t的值;
(2)試問是否存在這樣的t,使四邊形PBCQ的面積是梯形ABCD面積的一半?若存精英家教網(wǎng)在,求出這樣的t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,E為AD的中點(diǎn),求證:BE=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,點(diǎn)E、F分別在AB、DC上,且BE=3EA,CF=3FD.
求證:∠BEC=∠CFB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•廣州)如圖,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于點(diǎn)E,且EC=3,則梯形ABCD的周長是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:中考必備’04全國中考試題集錦·數(shù)學(xué) 題型:044

如圖,在等腰梯形AB∥⊥CD中,BC∥AD,BC=8,AD=20,AB=DC=10,點(diǎn)P從A點(diǎn)出發(fā)沿AD邊向點(diǎn)D移動(dòng),點(diǎn)Q自A點(diǎn)出發(fā)沿A→B→C的路線移動(dòng),且PQ∥DC,若AP=x,梯形位于線段PQ右側(cè)部分的面積為S.

  

(1)分別求出當(dāng)點(diǎn)Q位于AB、BC上時(shí),S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(2)當(dāng)線段PQ將梯形AB∥⊥CD分成面積相等的兩部分時(shí),x的值是多少?

(3)當(dāng)(2)的條件下,設(shè)線段PQ與梯形AB∥⊥CD的中位線EF交于O點(diǎn),那么OE與OF的長度有什么關(guān)系?借助備用圖說明理由;并進(jìn)一步探究:對任何一個(gè)梯形,當(dāng)一直線l經(jīng)過梯形中位線的中點(diǎn)并滿足什么條件時(shí),一定能平分梯形的面積?(只要求說出條件,不需要證明)

查看答案和解析>>

同步練習(xí)冊答案