【題目】如圖,點(diǎn)A,B在反比例函數(shù)y= (k>0)的圖象上,AC⊥x軸,BD⊥x軸,垂足C,D分別在x軸的正、負(fù)半軸上,CD=k,已知AB=2AC,E是AB的中點(diǎn),且△BCE的面積是△ADE的面積的2倍,則k的值是

【答案】
【解析】解:過點(diǎn)B作直線AC的垂線交直線AC于點(diǎn)F,如圖所示. ∵△BCE的面積是△ADE的面積的2倍,E是AB的中點(diǎn),
∴SABC=2SBCE , SABD=2SADE ,
∴SABC=2SABD , 且△ABC和△ABD的高均為BF,
∴AC=2BD,
∴OD=2OC.
∵CD=k,
∴點(diǎn)A的坐標(biāo)為( ,3),點(diǎn)B的坐標(biāo)為(﹣ ,﹣ ),
∴AC=3,BD= ,
∴AB=2AC=6,AF=AC+BD= ,
∴CD=k= = =
所以答案是:

【考點(diǎn)精析】利用比例系數(shù)k的幾何意義對(duì)題目進(jìn)行判斷即可得到答案,需要熟知幾何意義:表示反比例函數(shù)圖像上的點(diǎn)向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若實(shí)數(shù)m、n滿足等式,且m、n恰好是等腰△ABC的兩條邊的邊長,則△ABC的周長是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】湖州某企業(yè)新增了一個(gè)化工項(xiàng)目,為了節(jié)約資源,保護(hù)環(huán)境,該企業(yè)決定購買A、B兩種型號(hào)的污水處理設(shè)備共10臺(tái),具體情況如下表:

A

B

價(jià)格(萬元/臺(tái))

15

12

月污水處理能力(噸/月)

250

200

經(jīng)預(yù)算,企業(yè)最多支出136萬元購買設(shè)備,且要求月處理污水能力不低于2150噸.

(1)該企業(yè)有哪幾種購買方案?

(2)哪種方案更省錢?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+c的圖象如圖所示,則|a﹣b+c|+|2a+b|=(
A.a+b
B.a﹣2b
C.a﹣b
D.3a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A,B在反比例函數(shù)y= (k>0)的圖象上,AC⊥x軸,BD⊥x軸,垂足C,D分別在x軸的正、負(fù)半軸上,CD=k,已知AB=2AC,E是AB的中點(diǎn),且△BCE的面積是△ADE的面積的2倍,則k的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC△DEC中,已知AB=DE,還需添加兩個(gè)條件才能使△ABC≌△DEC,不能添加的一組條件是(   )

A. BC=EC,∠B=∠E B. BC=DC,∠A=∠D

C. BC=EC,AC=DC D. AC=DC,∠A=∠D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,延長CB至點(diǎn)F,使CF=CA,連接AF,∠ACF的平分線分別交AF,AB,BD于點(diǎn)E,N,M,連接EO.
(1)已知BD= ,求正方形ABCD的邊長;
(2)猜想線段EM與CN的數(shù)量關(guān)系并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)O為原點(diǎn),點(diǎn)A的坐標(biāo)為(﹣6,0).如圖1,正方形OBCD的頂點(diǎn)B在x軸的負(fù)半軸上,點(diǎn)C在第二象限.現(xiàn)將正方形OBCD繞點(diǎn)O順時(shí)針旋轉(zhuǎn)角α得到正方形OEFG.

(1)如圖2,若α=60°,OE=OA,求直線EF的函數(shù)表達(dá)式.
(2)若α為銳角,tanα= ,當(dāng)AE取得最小值時(shí),求正方形OEFG的面積.
(3)當(dāng)正方形OEFG的頂點(diǎn)F落在y軸上時(shí),直線AE與直線FG相交于點(diǎn)P,△OEP的其中兩邊之比能否為 :1?若能,求點(diǎn)P的坐標(biāo);若不能,試說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線L:y=ax2+bx+c與x軸交于A、B(3,0)兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C(0,3),已知對(duì)稱軸x=1.

(1)求拋物線L的解析式;
(2)將拋物線L向下平移h個(gè)單位長度,使平移后所得拋物線的頂點(diǎn)落在△OBC內(nèi)(包括△OBC的邊界),求h的取值范圍;
(3)設(shè)點(diǎn)P是拋物線L上任一點(diǎn),點(diǎn)Q在直線l:x=﹣3上,△PBQ能否成為以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若能,求出符合條件的點(diǎn)P的坐標(biāo);若不能,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案